-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
executable file
·264 lines (200 loc) · 10.4 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/python3
import math
import json
import pandas as pd
import re
import matplotlib.pyplot as plt
from matplotlib import gridspec, cm, ticker
import seaborn as sns
import argparse
import numpy as np
import sys
import copy
import collections
sns.set(style="whitegrid")
algo_order = ["No Optimization", "No Undo", "No Redundancy", "Skip Conversion", "GreedyLB-First", "GreedyLB-Most", "GreedyLB-Most Pruned", "LocalSearchLB-First", "LocalSearchLB-Most", "LocalSearchLB-Most Pruned"]
unfilled_markers = [m for m, func in plt.Line2D.markers.items() if func != 'nothing' and m not in plt.Line2D.filled_markers]
unfilled_markers.remove(',')
unfilled_markers.remove('|')
unfilled_markers.remove(0)
unfilled_markers.remove(1)
unfilled_markers.remove(2)
unfilled_markers.remove(3)
algo_markers = unfilled_markers[:len(algo_order)]
color_palette = sns.color_palette('bright', len(algo_order))
algo_colors = [color_palette[i] for i, v in enumerate(algo_order)]
thread_order = [1, 2, 4, 7, 14, 28]
thread_colors = [cm.plasma(i/len(thread_order)) for i in range(len(thread_order))]
def my_single_graph_plot(data, measure, logy=True):
fig, ax = plt.subplots(figsize=(10,4))
algos = data.Algorithm.unique()
for algo, color, marker in zip(algo_order, algo_colors, algo_markers):
if not algo in algos:
continue
algo_data = data[data.Algorithm == algo].sort_values(by='k')
k_perm_val = dict() # (k, perm) => val
for p, v, k in zip(algo_data.Permutation, algo_data[measure], algo_data.k):
if measure == 'Calls' and (k-1, p) in k_perm_val:
v += k_perm_val[(k-1, p)]
k_perm_val[(k, p)] = v
s = pd.Series(k_perm_val, name=measure)
s.index.names = ["k", "Permutation"]
plot_data = s.reset_index()[['k', measure]]
ax.scatter(plot_data.k, plot_data[measure], color=color, label=algo, marker=marker)
#mean_std = plot_data.groupby('k').agg([np.mean, np.std])
#ax.errorbar(x = mean_std.index, y = mean_std[(measure, 'mean')], yerr=mean_std[(measure, 'std')], color=color, label=algo)
if logy:
ax.set_yscale('log')
ax.set_ylim(data[measure].min(), data[measure].max())
ax.set_xlabel('k')
ax.set_ylabel(measure)
ax.legend()
fig.tight_layout()
return fig
def my_boxplot(data, measure, logy=True, showfliers=True):
data_slow = data[data.Algorithm.isin(algo_order[:4])]
data_fast = data[data.Algorithm.isin(algo_order[4:])]
axes = []
if data_slow.k.max() < data_fast.k.min():
min_k_slow = data_slow.k.min()
min_k_fast = data_fast.k.min()
slow_size = data_slow.k.max() - min_k_slow
fast_size = data_fast.k.max() - min_k_fast
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12,6), sharey=True, gridspec_kw={'width_ratios': [slow_size, fast_size]})
sns.boxplot(x="k", y=measure, hue="Algorithm", data=data_slow, ax=ax1, hue_order=algo_order[:4], palette=algo_colors[:4], showfliers=showfliers)
ax1.xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos : str(int(x + min_k_slow))))
sns.boxplot(x="k", y=measure, hue="Algorithm", data=data_fast, ax=ax2, hue_order=algo_order[4:], palette=algo_colors[4:], showfliers=showfliers)
ax2.set_ylabel("")
ax2.xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos : str(int(x + min_k_fast))))
axes.append(ax1)
axes.append(ax2)
else:
fig, ax = plt.subplots(figsize=(12, 6))
min_k = data.k.min()
sns.boxplot(x="k", y=measure, hue="Algorithm", data=data, ax=ax, hue_order=algo_order, palette=algo_colors, showfliers=showfliers)
ax.xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos : str(int(x + min_k))))
axes.append(ax)
fig.tight_layout(w_pad=0.1)
for ax in axes:
if logy:
ax.set_yscale('log')
ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
for patch in ax.artists:
patch.set_edgecolor(patch.get_facecolor())
return fig
def graph_k_selector(data, desired_k):
selector = False
for g, k in desired_k.items():
selector = ((data.Graph == g) & (data.k == k)) | selector
return selector
def graph_time_selector(data, desired_time):
selector = False
for g, t in desired_time.items():
selector = ((data.Graph == g) & (data['Total Time [s]'] == t)) | selector
return selector
def threading_boxplot(data, measure, logy=True, showfliers=True):
fig, ax = plt.subplots(figsize=(12, 6))
min_k = data.k.min()
sns.boxplot(x="k", y=measure, hue="Threads", data=data, ax=ax, hue_order=thread_order, palette=thread_colors, showfliers=showfliers)
ax.xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos : str(int(x + min_k))))
fig.tight_layout(w_pad=0.1)
if logy:
ax.set_yscale('log')
ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
for patch in ax.artists:
patch.set_edgecolor(patch.get_facecolor())
return fig
def threading_max_k_all_graphs(data, measure, logy=False, showfliers=True):
k_per_graph = data[data.Threads == 1].groupby(["Graph", "Threads", "Permutation"]).max().groupby("Graph").min().k
plot_data = data[graph_k_selector(data, k_per_graph)]
fig, ax = plt.subplots(figsize=(5, 4))
sns.boxplot(x="Graph", y=measure, hue="Threads", data=plot_data, ax=ax, hue_order=thread_order, palette=thread_colors, showfliers=showfliers)
fig.tight_layout()
if logy:
ax.set_yscale('log')
for patch in ax.artists:
patch.set_edgecolor(patch.get_facecolor())
return fig
def max_k_table(data, file=sys.stdout):
data = data[data.Algorithm.isin(algo_order)]
st_max_k = data[data.Threads == 1].groupby(["Graph"]).max().k
st_k_selector = graph_k_selector(data, st_max_k)
st_time = data[(data.Threads == 1) & st_k_selector].groupby(["Graph"]).min()['Total Time [s]']
st_full_data = data[(data.Threads == 1) & st_k_selector & graph_time_selector(data, st_time)]
st_algorithm = st_full_data.groupby(['Graph']).first().Algorithm
mt_max_k = data[(data.Threads == 16)].groupby(["Graph"]).max().k
mt_k_selector = graph_k_selector(data, mt_max_k)
mt_data = data[(data.Threads == 16) & mt_k_selector].groupby(["Graph"]).min()
mt_time = mt_data['Total Time [s]']
mt_full_data = data[(data.Threads == 16) & mt_k_selector & graph_time_selector(data, mt_time)]
mt_algorithm = mt_full_data.groupby(['Graph']).first().Algorithm
print("Best permutation for 16 Threads per Graph:")
print(mt_full_data[['Graph', 'Permutation', 'Algorithm']].to_string())
# mt_extra_k = data[(data.Threads == 16) & (data['Time [s]'] > 1000)].groupby(["Graph"]).max().k
# mt_extra_data = data[(data.Threads == 16) & (data['Time [s]'] > 1000) & graph_k_selector(data, mt_extra_k)].groupby(["Graph"]).min()
# mt_extra_time = mt_extra_data['Time [s]']
solved = mt_data['Solved']# | mt_extra_data['Solved']
df = pd.DataFrame(collections.OrderedDict([
(('Graph', 'Name'), mt_data.index),
(('Graph', 'n'), mt_data.n),
(('Graph', 'm'), mt_data.m),
(('Solved', ''), solved),
(('1 Thread', 'k'), st_max_k),
(('1 Thread', 'Time [s]'), st_time),
(('1 Thread', 'Algorithm'), st_algorithm),
(('16 Threads', 'k'), mt_max_k),
(('16 Threads', 'Time [s]'), mt_time),
(('16 Threads', 'Algorithm'), mt_algorithm)#,
# (('16 Threads*', 'k'), mt_extra_k),
# (('16 Threads*', 'Time [s]'), mt_extra_time)
]))
df.sort_values(by=('1 Thread', 'Time [s]'), inplace=True)
print(df.to_latex(index=False, formatters={('Solved', '') : lambda x : 'Yes' if x else 'No', ('28 Threads*', 'k') : lambda x : str(int(x)) if not math.isnan(x) else '', ('28 Threads*', 'Time [s]') : lambda x : "{:.2f}".format(x) if not math.isnan(x) else ''}, float_format=lambda x : "{:.2f}".format(x), na_rep=" "), file=file)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Create plots out of the result data.")
parser.add_argument("csv", help="The CSV input file")
parser.add_argument("output_dir", help="The output directory where plots shall be written")
args = parser.parse_args()
df = pd.read_csv(args.csv)
df_st_4 = df[(df.Threads == 1) & (df.l == 4)]
for g in df_st_4.Graph.unique():
g_df = df_st_4[(df_st_4.Graph == g) & (df_st_4.Calls > 1)]
fig = my_single_graph_plot(g_df, "Total Time [s]")
fig.savefig("{}/{}-times.pdf".format(args.output_dir, g))
plt.close(fig)
fig = my_single_graph_plot(g_df, "Calls")
fig.savefig("{}/{}-calls.pdf".format(args.output_dir, g))
plt.close(fig)
# fig = my_boxplot(g_df, "Scaling Factor Time", logy=False, showfliers=False)
# fig.savefig("{}/{}-scaling_time.pdf".format(args.output_dir, g))
# plt.close(fig)
#
# fig = my_boxplot(g_df, "Scaling Factor Calls", logy=False, showfliers=False)
# fig.savefig("{}/{}-scaling_calls.pdf".format(args.output_dir, g))
# plt.close(fig)
# # There are only 14 real permutations (0-13). Additional runs with 12h time limit
# # are marked as higher permutations in the data.
# mt_plot_data = df[(df.Algorithm == "Single") & (df.l == 4) & (df.Graph != "jazz") & (df.Permutation < 14)]
#
# fig = threading_max_k_all_graphs(mt_plot_data, "Speedup", logy=False)
# fig.savefig("{}/mt_speedup.pdf".format(args.output_dir))
# plt.close(fig)
#
# fig = threading_max_k_all_graphs(mt_plot_data, "Efficiency", logy=False)
# fig.savefig("{}/mt_efficiency.pdf".format(args.output_dir))
# plt.close(fig)
#
# fig = threading_max_k_all_graphs(mt_plot_data, "Time [s]", logy=True)
# fig.savefig("{}/mt_time.pdf".format(args.output_dir))
# plt.close(fig)
#
# fig = threading_max_k_all_graphs(mt_plot_data, "Calls", logy=True)
# fig.savefig("{}/mt_calls.pdf".format(args.output_dir))
# plt.close(fig)
max_k_data = df[(df.l == 4) & (df.Graph != "jazz")]
with open("{}/max_k.tex".format(args.output_dir), "w") as f:
max_k_table(max_k_data, f)
#print("Fallback percentage:")
#df['Fallback %'] = df['Fallbacks'] / (df['Fallbacks'] + df['Single']) * 100
#print(df[(df.Graph != 'jazz') & (df.Algorithm == 'Single') & (df.l == 4)].groupby(['Graph', 'k']).max()['Fallback %'].to_string(float_format=lambda x : "{:.2f}".format(x)))
#print(df[(df.Graph != 'jazz') & (df.Algorithm == 'ARW-Single') & (df.l == 4)].groupby(['Graph', 'k']).max()['Fallback %'].to_string())