-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli.py
84 lines (75 loc) · 3.94 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
"""Command Line Interface"""
import sys
import argparse
from KB import KnowledgeBase
from SpatialDB import SpatialDB
from object_reasoner import ObjectReasoner
from sklearn.model_selection import StratifiedKFold
import copy
import os
import json
import time
from crossval_sampling import *
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--path_to_data', help='Base path to raw spatial data', default='./data')
parser.add_argument('--path_to_pred', help='Base path to ML predictions', default='./data/logged-predictions')
parser.add_argument('--dbname', help='Name for PostGRE SQL spatial database', default='gis_database')
parser.add_argument('--scenario', nargs='?',
choices=['best', 'worst', 'selected'],
default="selected",
help="Hybrid correction scenario."
"best: correct all which need correction, based on ground truth"
"worst: correct all ML predictions indiscriminately"
"selected: apply selection based on ML confidence")
parser.add_argument('--baseline', nargs='?',
choices=['k-net', 'n-net', 'two-stage'],
default="k-net",
help="Baseline ML method to retrieve predictions from.")
parser.add_argument('--set', default='lab', choices=['lab'], help="Chosen dataset. Only Lab set supported at the moment.")
parser.add_argument('--nsplits', type=int, default=7,
help="Number of folds for Kfold cross validation. Defaults to 7.")
parser.add_argument('--rm', nargs='?',
choices=['spatial', 'size', 'size+spatial'],
default="spatial",
help="Reasoning method to use after applying ML baseline ")
parser.add_argument('--ql', nargs='?',
choices=['gold', 'ML'],
default="gold",
help="Which labels to use for nearby objects when validating QSRs"
"gold: ground truth labels for all objects but the one to predict"
"ML: ML predicted labels")
args = parser.parse_args()
overall_res = {m: {} for m in ['MLonly', args.rm]} # dictionary of ablations under test
overall_res[args.rm]['processingTime'] = []
KB = KnowledgeBase(args)
print("Init VG data and batch-compute 3D geometries for spatial DB.. ")
start = time.time()
spatialDB = SpatialDB(KB, args)
spatialDB.db_session()
print("Took % fseconds." % float(time.time() - start))
reasoner = ObjectReasoner(args,spatialDB.ids_tbprocessed)
# Nfold stratified cross-validation for test results
# subsample test set to devote a small portion to param tuning
skf = StratifiedKFold(n_splits=args.nsplits)
allclasses = reasoner.mapper.values()
for test1_index, test2_index in skf.split(reasoner.predictions, reasoner.labels):
sampled_reasoner = subsample(copy.deepcopy(reasoner), test1_index, test2_index, allclasses)
overall_res = sampled_reasoner.run(overall_res,spatialDB)
"""Compute mean and stdev of eval results across test runs
and output eval report as json file"""
avg_res = {}
for method, subdict in overall_res.items():
print("---Cross-fold eval results for method %s----" % method)
avg_res[method] = {}
for metric_name, metric_array in subdict.items():
meanm = statistics.mean(metric_array)
print("Mean %s: %f" % (metric_name, meanm))
stdm = statistics.stdev(metric_array)
print("Stdev %s: %f" % (metric_name, stdm))
avg_res[method][metric_name] = str(meanm) + "+-" + str (stdm)
with open(os.path.join(args.path_to_data, 'eval_results_%s_%s' % (args.baseline, args.set)), 'w') as jout:
json.dump(avg_res, jout)
return 0
if __name__ == '__main__':
sys.exit(main())