forked from snap-stanford/GraphGym
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathidconv.py
487 lines (392 loc) · 17.1 KB
/
idconv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.inits import glorot, reset, zeros
from torch_geometric.utils import (add_remaining_self_loops, add_self_loops,
remove_self_loops, softmax)
from torch_scatter import scatter_add
from graphgym.config import cfg
from graphgym.register import register_layer
class GeneralIDConvLayer(MessagePassing):
def __init__(self,
in_channels,
out_channels,
improved=False,
cached=False,
bias=True,
**kwargs):
super(GeneralIDConvLayer, self).__init__(aggr=cfg.gnn.agg, **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.improved = improved
self.cached = cached
self.normalize = cfg.gnn.normalize_adj
self.weight = Parameter(torch.Tensor(in_channels, out_channels))
self.weight_id = Parameter(torch.Tensor(in_channels, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
glorot(self.weight)
glorot(self.weight_id)
zeros(self.bias)
self.cached_result = None
self.cached_num_edges = None
@staticmethod
def norm(edge_index,
num_nodes,
edge_weight=None,
improved=False,
dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ),
dtype=dtype,
device=edge_index.device)
fill_value = 1.0 if not improved else 2.0
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x, edge_index, id, edge_weight=None):
""""""
x_id = torch.index_select(x, dim=0, index=id)
x_id = torch.matmul(x_id, self.weight_id)
x = torch.matmul(x, self.weight)
x.index_add_(0, id, x_id)
if self.cached and self.cached_result is not None:
if edge_index.size(1) != self.cached_num_edges:
raise RuntimeError(
'Cached {} number of edges, but found {}. Please '
'disable the caching behavior of this layer by removing '
'the `cached=True` argument in its constructor.'.format(
self.cached_num_edges, edge_index.size(1)))
if not self.cached or self.cached_result is None:
self.cached_num_edges = edge_index.size(1)
if self.normalize:
edge_index, norm = self.norm(edge_index, x.size(self.node_dim),
edge_weight, self.improved,
x.dtype)
else:
norm = edge_weight
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
return self.propagate(edge_index, x=x, norm=norm)
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j if norm is not None else x_j
def update(self, aggr_out):
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.in_channels,
self.out_channels)
class GCNIDConvLayer(MessagePassing):
def __init__(self,
in_channels,
out_channels,
improved=False,
cached=False,
bias=True,
normalize=True,
**kwargs):
super(GCNIDConvLayer, self).__init__(aggr='add', **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.improved = improved
self.cached = cached
self.normalize = normalize
self.weight = Parameter(torch.Tensor(in_channels, out_channels))
self.weight_id = Parameter(torch.Tensor(in_channels, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
glorot(self.weight)
glorot(self.weight_id)
zeros(self.bias)
self.cached_result = None
self.cached_num_edges = None
@staticmethod
def norm(edge_index,
num_nodes,
edge_weight=None,
improved=False,
dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ),
dtype=dtype,
device=edge_index.device)
fill_value = 1.0 if not improved else 2.0
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x, edge_index, id, edge_weight=None):
""""""
x_id = torch.index_select(x, dim=0, index=id)
x_id = torch.matmul(x_id, self.weight_id)
x = torch.matmul(x, self.weight)
x.index_add_(0, id, x_id)
if self.cached and self.cached_result is not None:
if edge_index.size(1) != self.cached_num_edges:
raise RuntimeError(
'Cached {} number of edges, but found {}. Please '
'disable the caching behavior of this layer by removing '
'the `cached=True` argument in its constructor.'.format(
self.cached_num_edges, edge_index.size(1)))
if not self.cached or self.cached_result is None:
self.cached_num_edges = edge_index.size(1)
if self.normalize:
edge_index, norm = self.norm(edge_index, x.size(self.node_dim),
edge_weight, self.improved,
x.dtype)
else:
norm = edge_weight
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
return self.propagate(edge_index, x=x, norm=norm)
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j if norm is not None else x_j
def update(self, aggr_out):
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.in_channels,
self.out_channels)
class SAGEIDConvLayer(MessagePassing):
def __init__(self,
in_channels,
out_channels,
normalize=False,
concat=False,
bias=True,
**kwargs):
super(SAGEIDConvLayer, self).__init__(aggr='mean', **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.normalize = normalize
self.concat = concat
in_channels = 2 * in_channels if concat else in_channels
self.weight = Parameter(torch.Tensor(in_channels, out_channels))
self.weight_id = Parameter(torch.Tensor(in_channels, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
# uniform(self.weight.size(0), self.weight)
# uniform(self.weight.size(0), self.weight_id)
# uniform(self.weight.size(0), self.bias)
glorot(self.weight)
glorot(self.weight_id)
zeros(self.bias)
def forward(self,
x,
edge_index,
id,
edge_weight=None,
size=None,
res_n_id=None):
"""
Args:
res_n_id (Tensor, optional): Residual node indices coming from
:obj:`DataFlow` generated by :obj:`NeighborSampler` are used to
select central node features in :obj:`x`.
Required if operating in a bipartite graph and :obj:`concat` is
:obj:`True`. (default: :obj:`None`)
"""
if not self.concat and torch.is_tensor(x):
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, 1, x.size(self.node_dim))
return self.propagate(edge_index,
size=size,
x=x,
edge_weight=edge_weight,
res_n_id=res_n_id,
id=id)
def message(self, x_j, edge_weight):
return x_j if edge_weight is None else edge_weight.view(-1, 1) * x_j
def update(self, aggr_out, x, res_n_id, id):
if self.concat and torch.is_tensor(x):
aggr_out = torch.cat([x, aggr_out], dim=-1)
elif self.concat and (isinstance(x, tuple) or isinstance(x, list)):
assert res_n_id is not None
aggr_out = torch.cat([x[0][res_n_id], aggr_out], dim=-1)
aggr_out_id = torch.index_select(aggr_out, dim=0, index=id)
aggr_out_id = torch.matmul(aggr_out_id, self.weight_id)
aggr_out = torch.matmul(aggr_out, self.weight)
aggr_out.index_add_(0, id, aggr_out_id)
if self.bias is not None:
aggr_out = aggr_out + self.bias
if self.normalize:
aggr_out = F.normalize(aggr_out, p=2, dim=-1)
return aggr_out
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.in_channels,
self.out_channels)
class GATIDConvLayer(MessagePassing):
def __init__(self,
in_channels,
out_channels,
heads=1,
concat=True,
negative_slope=0.2,
dropout=0,
bias=True,
**kwargs):
super(GATIDConvLayer, self).__init__(aggr='add', **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.heads = heads
self.concat = concat
self.negative_slope = negative_slope
self.dropout = dropout
self.weight = Parameter(torch.Tensor(in_channels,
heads * out_channels))
self.weight_id = Parameter(
torch.Tensor(in_channels, heads * out_channels))
self.att = Parameter(torch.Tensor(1, heads, 2 * out_channels))
if bias and concat:
self.bias = Parameter(torch.Tensor(heads * out_channels))
elif bias and not concat:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
glorot(self.weight)
glorot(self.weight_id)
glorot(self.att)
zeros(self.bias)
def forward(self, x, edge_index, id, size=None):
""""""
if size is None and torch.is_tensor(x):
edge_index, _ = remove_self_loops(edge_index)
edge_index, _ = add_self_loops(edge_index,
num_nodes=x.size(self.node_dim))
if torch.is_tensor(x):
x_id = torch.index_select(x, dim=0, index=id)
x_id = torch.matmul(x_id, self.weight_id)
x = torch.matmul(x, self.weight)
x.index_add_(0, id, x_id)
else:
x = (None if x[0] is None else torch.matmul(x[0], self.weight),
None if x[1] is None else torch.matmul(x[1], self.weight))
return self.propagate(edge_index, size=size, x=x)
def message(self, edge_index_i, x_i, x_j, size_i):
# Compute attention coefficients.
x_j = x_j.view(-1, self.heads, self.out_channels)
if x_i is None:
alpha = (x_j * self.att[:, :, self.out_channels:]).sum(dim=-1)
else:
x_i = x_i.view(-1, self.heads, self.out_channels)
alpha = (torch.cat([x_i, x_j], dim=-1) * self.att).sum(dim=-1)
alpha = F.leaky_relu(alpha, self.negative_slope)
alpha = softmax(alpha, edge_index_i, num_nodes=size_i)
# Sample attention coefficients stochastically.
alpha = F.dropout(alpha, p=self.dropout, training=self.training)
return x_j * alpha.view(-1, self.heads, 1)
def update(self, aggr_out):
if self.concat is True:
aggr_out = aggr_out.view(-1, self.heads * self.out_channels)
else:
aggr_out = aggr_out.mean(dim=1)
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {}, heads={})'.format(self.__class__.__name__,
self.in_channels,
self.out_channels, self.heads)
class GINIDConvLayer(MessagePassing):
def __init__(self, nn, nn_id, eps=0, train_eps=False, **kwargs):
super(GINIDConvLayer, self).__init__(aggr='add', **kwargs)
self.nn = nn
self.nn_id = nn_id
self.initial_eps = eps
if train_eps:
self.eps = torch.nn.Parameter(torch.Tensor([eps]))
else:
self.register_buffer('eps', torch.Tensor([eps]))
self.reset_parameters()
def reset_parameters(self):
reset(self.nn)
reset(self.nn_id)
self.eps.data.fill_(self.initial_eps)
def forward(self, x, edge_index, id):
""""""
x = x.unsqueeze(-1) if x.dim() == 1 else x
edge_index, _ = remove_self_loops(edge_index)
x = (1 + self.eps) * x + self.propagate(edge_index, x=x)
x_id = torch.index_select(x, dim=0, index=id)
x_id = self.nn_id(x_id)
x = self.nn(x)
x.index_add_(0, id, x_id)
return x
def message(self, x_j):
return x_j
def __repr__(self):
return '{}(nn={})'.format(self.__class__.__name__, self.nn)
class GeneralIDConv(nn.Module):
def __init__(self, dim_in, dim_out, bias=False, **kwargs):
super(GeneralIDConv, self).__init__()
self.model = GeneralIDConvLayer(dim_in, dim_out, bias=bias)
def forward(self, batch):
batch.node_feature = self.model(batch.node_feature, batch.edge_index,
batch.node_id_index)
return batch
class GCNIDConv(nn.Module):
def __init__(self, dim_in, dim_out, bias=False, **kwargs):
super(GCNIDConv, self).__init__()
self.model = GCNIDConvLayer(dim_in, dim_out, bias=bias)
def forward(self, batch):
batch.node_feature = self.model(batch.node_feature, batch.edge_index,
batch.node_id_index)
return batch
class SAGEIDConv(nn.Module):
def __init__(self, dim_in, dim_out, bias=False, **kwargs):
super(SAGEIDConv, self).__init__()
self.model = SAGEIDConvLayer(dim_in, dim_out, bias=bias, concat=True)
def forward(self, batch):
batch.node_feature = self.model(batch.node_feature, batch.edge_index,
batch.node_id_index)
return batch
class GATIDConv(nn.Module):
def __init__(self, dim_in, dim_out, bias=False, **kwargs):
super(GATIDConv, self).__init__()
self.model = GATIDConvLayer(dim_in, dim_out, bias=bias)
def forward(self, batch):
batch.node_feature = self.model(batch.node_feature, batch.edge_index,
batch.node_id_index)
return batch
class GINIDConv(nn.Module):
def __init__(self, dim_in, dim_out, bias=False, **kwargs):
super(GINIDConv, self).__init__()
gin_nn = nn.Sequential(nn.Linear(dim_in, dim_out), nn.ReLU(),
nn.Linear(dim_out, dim_out))
gin_nn_id = nn.Sequential(nn.Linear(dim_in, dim_out), nn.ReLU(),
nn.Linear(dim_out, dim_out))
self.model = GINIDConvLayer(gin_nn, gin_nn_id)
def forward(self, batch):
batch.node_feature = self.model(batch.node_feature, batch.edge_index,
batch.node_id_index)
return batch
register_layer('idconv', GeneralIDConv)
register_layer('gcnidconv', GCNIDConv)
register_layer('sageidconv', SAGEIDConv)
register_layer('gatidconv', GATIDConv)
register_layer('ginidconv', GINIDConv)