forked from kookmin-sw/cap-template
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
149 lines (110 loc) · 4.16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from Color_extract.color import *
from Skin_detect.skin_detect_v2 import *
from PC_model.pc_model import PersonalColorModel
from PC_model.utils import draw_probability_bar_chart
from image_processing.gamma_correction import gamma_correction
import joblib
import os
import pandas as pd
import shutil
import base64
from flask import Flask, request
import json
import shape_detect.controller
app = Flask(__name__)
image_path = os.path.join(os.path.dirname(__file__), "predict_image")
info_path = os.path.join(os.path.dirname(__file__), "info.csv")
filename = ""
num = 1
pc_model : PersonalColorModel = joblib.load('./model_v2.pkl')
ss = joblib.load("./scaler_v2.pkl")
features = ['Hair_Red', 'Hue', 'Saturation', 'Cr', 'Cb', 'L',
'A', 'B', 'New Blue', 'Eye_Red', 'Eye_Blue', 'New Green', 'New Red']
current_image_path = ""
current_image_name = ""
@app.route('/')
def hello_world():
return 'Hello World!'
@app.route('/predict_color', methods = ['POST'])
def predict_color():
global features, pc_model, ss, current_image_path, current_image_name, num
# 이미지 저장
f = request.files['image']
data = json.loads(request.form.get("data"))
type = f.filename[f.filename.rfind("."):]
if data["email"] == "":
data["email"] = "image{}".format(num)
num += 1
folder_path = os.path.join(image_path, data["email"])
f_path = os.path.join(folder_path, "origin_img" + type)
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
os.makedirs(folder_path)
f.save(f_path)
# 생성형 이미지를 위한 정보 저장
df = pd.read_csv(info_path)
df.loc[len(df)] = [data["email"], data["gender"], data["gan_permission"], f_path]
df.to_csv(info_path, mode = 'w', index=False)
current_image_path = f_path[:]
current_image_name = data["email"][:]
# 데이터 추출
data = total_data_extract(f_path, True)
# DataFrame으로 변환
df = pd.DataFrame(data, index = [0])
# 학습에 사용된 features들만 가져오기
predict_data = df[features]
# Scaler
preprocssing_data = ss.transform(predict_data)
# 예츨 결과
raw_res = pc_model.select_test("xgb", preprocssing_data)
probability_res = pc_model.select_predict_probability("xgb", preprocssing_data)
predict_probability = {}
# key_list = ["xgb", "knn", "lr", "voting", "rfc"]
key_list = ["xgb"]
for probability_list, key in zip(probability_res, key_list):
predict_probability[key] = list(map(lambda x : "{:.2f}%".format(x * 100), probability_list))
draw_probability_bar_chart(list(map(lambda x : round(x * 100), probability_res[0])), folder_path)
predict_res = {}
for predict, key in zip(raw_res, key_list):
if predict == 0:
label = "봄"
elif predict == 1:
label = "여름"
elif predict == 2:
label = "가을"
else:
label = "겨울"
predict_res[key] = label
res = {"label_res" : predict_res, "probability_res" : predict_probability}
img_dict = {}
for i in os.listdir(folder_path):
with open(os.path.join(folder_path, i), "rb") as img:
img_dict[i[: i.index(".")]] = base64.b64encode(img.read()).decode('utf-8')
res["images"] = img_dict
return res
@app.route('/predict_test')
def test():
return str(pc_model.test([[0] * 13]))
from shape_detect.controller import get_shape
from gan.resize import resize_img
@app.route('/predict_shape', methods =['GET'])
def predict_shape():
global current_image_path
print(current_image_path)
result = get_shape(current_image_path)
if result == -1:
return "경로에 사진을 찾을 수 없음"
shape_list = ["긴 형", "둥근형", "각진형"]
idx = result.index(max(result))
res = {}
res['shape'] = shape_list[idx]
total = sum(result)
probability = {}
for type, proba in zip(shape_list, result):
probability[type] = "{:.2f}%".format(proba * 100)
res['probability'] = probability
print(res)
resize_img(current_image_path, current_image_name)
return res
if __name__ == '__main__':
app.run(port="5050", debug=True)