forked from jinseob2kim/R-skku-biohrs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.R
332 lines (235 loc) · 10.5 KB
/
base.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
## Vector
x <- c(1, 2, 3, 4, 5, 6) ## vector of variable
y <- c(7, 8, 9, 10, 11, 12)
x + y
x * y
sqrt(x) ## root
sum(x)
diff(x) ## difference
mean(x) ## mean
var(x) ## variance
sd(x) ## standard deviation
median(x) ## median
IQR(x) ## inter-quantile range
max(x) ## max value
which.max(x) ## order of max value
max(x, y) ## max value among x & y
length(x)
## Slice
x[2] ## 2 번째
x[-2] ## 2 번째만 빼고
x[1:3] ## 1-3 번째
x[c(1, 2, 3)] ## 동일
x[c(1, 3, 4, 5, 6)] ## 1, 3, 4, 5, 6 번째
x >= 4 ## 각 항목이 4 이상인지 TRUE/FALSE
sum(x >= 4) ## TRUE 1, FALSE 0 인식
x[x >= 4] ## TRUE 인 것들만, 즉 4 이상인 것들
sum(x[x >= 4]) ## 4 이상인 것들만 더하기.
x %in% c(1, 3, 5) ## 1, 3, 5 중 하나에 속하는지 TRUE/FALSE
x[x %in% c(1, 3, 5)]
## Make vector
v1 <- seq(-5, 5, by = .2); v1 ## Sequence
v2 <- rep(1, 3); v2 ## Repeat
v3 <- rep(c(1, 2, 3), 2); v3 ## Repeat for vector
v4 <- rep(c(1, 2, 3), each = 2); v4 ## Repeat for vector : each
## for
for (i in 1:3){
print(i)
}
i <- 0
for (j in c(1, 2, 4, 5, 6)){
i <- i + j
}
i
## if/else
x <- 5
if (x >= 3 ){
x <- x + 3
}
x
x <- 5
if (x >= 10){
print("High")
} else if (x >= 5){
print("Medium")
} else {
print("Low")
}
## ifelse
x <- 1:6
y <- ifelse(x >= 4, "Yes", "No") ## ifelse (조건,참일때,거짓일때)
y
## function
x <- c(1:10, 12, 13, NA, NA, 15, 17) ## 결측치가 포함되어 있다면..
mean(x)
mean0 <- function(x){
mean(x, na.rm = T)
} ## mean함수의 na.rm 옵션을 TRUE로 바꿈. default는 F
mean0 <- function(x){mean(x, na.rm = T)} ## 한줄에 쓸 수도 있다.
mean0(x)
twomean <- function(x1, x2){
a <- (x1 + x2)/2
a
}
twomean(4, 6)
## Apply: apply, sapply, lapply
mat <- matrix(1:20, nrow = 4, byrow = T) ## 4행 5열, byrow = T : 행부터 채운다.
mat
out <- NULL ## 빈 벡터, 여기에 하나씩 붙여넣는다.
for (i in 1:nrow(mat)){
out <- c(out, mean(mat[i, ]))
}
out
sapply(1:nrow(mat), function(x){mean(mat[x, ])}) ## Return vector
lapply(1:nrow(mat), function(x){mean(mat[x, ])}) ## Return list type
unlist(lapply(1:nrow(mat), function(x){mean(mat[x, ])})) ## Same to sapply
#parallel::mclapply(1:nrow(mat), function(x){mean(mat[x, ])}, mc.cores = 4) ## Multicore
apply(mat, 1, mean) ## 1: 행
rowMeans(mat) ## 동일
rowSums(mat) ## 행별로 합
apply(mat, 2, mean) ## 2: 열
colMeans(mat) ## 열별로 합
## Practice 1
x <- 1:6
y <- 7:12
## With data
getwd() ## 현재 디렉토리
setwd("data") ## 디렉토리 설정
## 동일
setwd("/cloud/project/data")
getwd()
ex <- read.csv("example_g1e.csv")
head(ex)
ex <- read.csv("https://raw.githubusercontent.com/jinseob2kim/lecture-snuhlab/master/data/example_g1e.csv")
head(ex)
#install.packages(c("readxl", "haven")) ## install packages
library(readxl) ## for xlsx
ex.excel <- read_excel("example_g1e.xlsx", sheet = 1) ## 1st sheet
library(haven) ## for SAS/SPSS/STATA
ex.sas <- read_sas("example_g1e.sas7bdat") ## SAS
ex.spss <- read_sav("example_g1e.sav") ## SPSS
head(ex.spss)
write.csv(ex, "example_g1e_ex.csv", row.names = F)
#write_sas(ex.sas, "example_g1e_ex.sas7bdat")
#write_sav(ex.spss, "example_g1e_ex.sav")
## See data
head(ex) ## 처음 6행
tail(ex) ## 마지막 6행
head(ex, 10) ## 처음 10행
str(ex)
names(ex)
dim(ex) ## row, column
nrow(ex) ## row
ncol(ex) ## column
class(ex)
class(ex.spss)
summary(ex)
## See variables
ex$EXMD_BZ_YYYY ## data.frame style
ex[, "EXMD_BZ_YYYY"] ## matrix style
ex[["EXMD_BZ_YYYY"]] ## list style
ex[, 1] ## matrix style with order
ex[[1]] ## list style with order
ex[, c("EXMD_BZ_YYYY", "RN_INDI", "BMI")] ## matrix syle with names
ex[, c(1, 2, 16)] ## matrix syle with names
ex[, names(ex)[c(1, 2, 16)]] ## same
ex$EXMD_BZ_YYYY[1:50] ## data.frame style
ex[1:50, 1] ## matrix style
ex[[1]][1:50] ## list style
unique(ex$EXMD_BZ_YYYY) ## unique value
length(unique(ex$EXMD_BZ_YYYY)) ## number of unique value
table(ex$EXMD_BZ_YYYY) ## table
## New variable
mean(ex$BMI) ## mean
BMI_cat <- (ex$BMI >= 25) ## TRUE of FALSE
table(BMI_cat)
rows <- which(ex$BMI >= 25) ## row numbers
head(rows)
values <- ex$BMI[ex$BMI >= 25] ## values
head(values)
length(values)
BMI_HGHT_and <- (ex$BMI >= 25 & ex$HGHT >= 175) ## and
BMI_HGHT_or <- (ex$BMI >= 25 | ex$HGHT >= 175) ## or
ex$zero <- 0 ## variable with 0
ex$BMI_cat <- (ex$BMI >= 25) ## T/F
ex$BMI_cat <- as.integer(ex$BMI >= 25) ## 0, 1
ex$BMI_cat <- as.character(ex$BMI >= 25) ## "0", "1"
ex$BMI_cat <- ifelse(ex$BMI >= 25, "1", "0") ## same
table(ex$BMI_cat)
ex[, "BMI_cat"] <- (ex$BMI >= 25) ## matrix style
ex[["BMI_cat"]] <- (ex$BMI >= 25) ## list style
## Set class
vars.cat <- c("RN_INDI", "Q_PHX_DX_STK", "Q_PHX_DX_HTDZ", "Q_PHX_DX_HTN", "Q_PHX_DX_DM", "Q_PHX_DX_DLD", "Q_PHX_DX_PTB",
"Q_HBV_AG", "Q_SMK_YN", "Q_DRK_FRQ_V09N")
vars.cat <- names(ex)[c(2, 4:12)] ## same
vars.cat <- c("RN_INDI", grep("Q_", names(ex), value = T)) ## same: extract variables starting with "Q_"
vars.conti <- setdiff(names(ex), vars.cat) ## Exclude categorical variables
vars.conti <- names(ex)[!(names(ex) %in% vars.cat)] ## same: !- not, %in%- including
for (vn in vars.cat){ ## for loop: as.factor
ex[, vn] <- as.factor(ex[, vn])
}
for (vn in vars.conti){ ## for loop: as.numeric
ex[, vn] <- as.numeric(ex[, vn])
}
summary(ex)
table(as.numeric(ex$Q_PHX_DX_STK))
table(as.numeric(as.character(ex$Q_PHX_DX_STK)))
## Date
addDate <- paste(ex$HME_YYYYMM, "01", sep = "") ## add day- use `paste`
ex$HME_YYYYMM <- as.Date(addDate, format = "%Y%m%d") ## set format
head(ex$HME_YYYYMM)
class(ex$HME_YYYYMM)
## NA
tapply(ex$LDL, ex$EXMD_BZ_YYYY, mean) ## measure/group/function
tapply(ex$LDL, ex$EXMD_BZ_YYYY,
function(x){
mean(x, na.rm = T)
})
summary(lm(LDL ~ HDL, data = ex))
## Practice 2
ex.naomit <- na.omit(ex)
nrow(ex.naomit)
getmode <- function(v){
uniqv <- unique(v)
uniqv[which.max(tabulate(match(v, uniqv)))]
}
getmode(ex$Q_PHX_DX_STK)
## Subset
ex1 <- ex.naomit ## simple name
ex1.2012 <- ex1[ex1$EXMD_BZ_YYYY >= 2012, ]
table(ex1.2012$EXMD_BZ_YYYY)
ex1.2012 <- subset(ex1, EXMD_BZ_YYYY >= 2012) ## subset
table(ex1.2012$EXMD_BZ_YYYY)
## Group by
aggregate(ex1[, c("WSTC", "BMI")], list(ex1$Q_PHX_DX_HTN), mean)
aggregate(cbind(WSTC, BMI) ~ Q_PHX_DX_HTN, data = ex1, mean) ## same
aggregate(cbind(WSTC, BMI) ~ Q_PHX_DX_HTN, data = ex, mean)
aggregate(ex1[, c("WSTC", "BMI")], list(ex1$Q_PHX_DX_HTN, ex1$Q_PHX_DX_DM), mean)
aggregate(cbind(WSTC, BMI) ~ Q_PHX_DX_HTN + Q_PHX_DX_DM, data = ex1, mean)
aggregate(cbind(WSTC, BMI) ~ Q_PHX_DX_HTN + Q_PHX_DX_DM, data = ex1, function(x){c(mean = mean(x), sd = sd(x))})
aggregate(. ~ Q_PHX_DX_HTN + Q_PHX_DX_DM, data = ex1, function(x){c(mean = mean(x), sd = sd(x))})
## Sort
ord <- order(ex1$HGHT) ## 작은 순서대로 순위
head(ord)
head(ex1$HGHT[ord]) ## Sort
ord.desc <- order(-ex1$HGHT) ## descending
head(ex1$HGHT[ord.desc])
ex1.sort <- ex1[ord, ]
head(ex1.sort)
## Wide to long, long to wide format
library(reshape2)
long <- melt(ex1, id = c("EXMD_BZ_YYYY", "RN_INDI"), measure.vars = c("BP_SYS", "BP_DIA"), variable.name = "BP_type", value.name = "BP")
long
library(reshape2)
long <- melt(ex1, id = c("EXMD_BZ_YYYY", "RN_INDI"), measure.vars = c("BP_SYS", "BP_DIA"), variable.name = "BP_type", value.name = "BP")
long %>% paged_table(options = list(rownames.print = F))
wide <- dcast(long, EXMD_BZ_YYYY + RN_INDI ~ BP_type, value.var = "BP")
head(wide)
## Merge
ex1.Q <- ex1[, c(1:3, 4:12)]
ex1.measure <- ex1[, c(1:3, 13:ncol(ex1))]
head(ex1.Q)
head(ex1.measure)
# all = T: Full, all.x = T: Left, all.y: Right, all = F: inner join
ex1.merge <- merge(ex1.Q, ex1.measure, by = c("EXMD_BZ_YYYY", "RN_INDI", "HME_YYYYMM"), all = T)
head(ex1.merge)