-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrecognition.py
155 lines (141 loc) · 5.3 KB
/
recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import numpy as np
import tensorflow as tf
import argparse
def load_data_nested(dirname):
if dirname[-1]!='/':
dirname=dirname+'/'
listfile=os.listdir(dirname)
X = []
Y = []
for file in listfile:
if "_" in file:
continue
wordname=file
textlist=os.listdir(dirname+wordname)
for text in textlist:
if "DS_" in text:
continue
textname=dirname+wordname+"/"+text
numbers=[]
with open(textname, mode = 'r') as t:
numbers = [float(num) for num in t.read().split()]
for i in range(len(numbers),25200):
numbers.extend([0.000])
landmark_frame=[]
row=0
for i in range(0,70):
landmark_frame.extend(numbers[row:row+84])
row += 84
landmark_frame=np.array(landmark_frame)
landmark_frame=landmark_frame.reshape(-1,84)
X.append(np.array(landmark_frame))
Y.append(wordname)
X=np.array(X)
Y=np.array(Y)
x_train = X
x_train=np.array(x_train)
return x_train,Y
def load_data(dirname):
if dirname[-1] != '/':
dirname=dirname+'/'
listfile=os.listdir(dirname)
X = []
Y = []
for text in listfile:
textname = dirname + text
numbers=[]
with open(textname, mode = 'r') as t:
numbers = [float(num) for num in t.read().split()]
for i in range(len(numbers),25200):
numbers.extend([0.000])
landmark_frame=[]
row=0
for i in range(0,70):
landmark_frame.extend(numbers[row:row+84])
row += 84
landmark_frame=np.array(landmark_frame)
landmark_frame=landmark_frame.reshape(-1,84)
X.append(np.array(landmark_frame))
Y.append(text)
X = np.array(X)
Y = np.array(Y)
x_train = X
x_train=np.array(x_train)
return x_train,Y
def load_label():
listfile=[]
with open("sign-prediction/label.txt",mode='r') as l:
listfile=[i for i in l.read().split()]
label = {}
count = 1
for l in listfile:
if "_" in l:
continue
label[l] = count
count += 1
return label
def parse_video_and_generate_files(input_data_path, output_data_path):
comp='bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 \mediapipe/examples/desktop/hand_tracking:hand_tracking_cpu'
cmd='GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/hand_tracking/hand_tracking_cpu \--calculator_graph_config_file=mediapipe/graphs/hand_tracking/hand_tracking_desktop_live.pbtxt'
listfile=os.listdir(input_data_path)
if not(os.path.isdir(output_data_path+"Relative/")):
os.mkdir(output_data_path+"Relative/")
if not(os.path.isdir(output_data_path+"Absolute/")):
os.mkdir(output_data_path+"Absolute/")
for file in listfile:
if not(os.path.isdir(input_data_path+file)):
continue
word = file + "/"
fullfilename=os.listdir(input_data_path+word)
if not(os.path.isdir(output_data_path+"_"+word)):
os.mkdir(output_data_path+"_"+word)
if not(os.path.isdir(output_data_path+"Relative/"+word)):
os.mkdir(output_data_path+"Relative/"+word)
if not(os.path.isdir(output_data_path+"Absolute/"+word)):
os.mkdir(output_data_path+"Absolute/"+word)
os.system(comp)
outputfilelist = os.listdir(output_data_path + '_' + word)
for mp4list in fullfilename:
if ".DS_Store" in mp4list:
continue
inputfilen=' --input_video_path='+input_data_path+word+mp4list
outputfilen=' --output_video_path='+output_data_path+'_'+word+mp4list
cmdret = cmd + inputfilen + outputfilen
os.system(cmdret)
def recogintion(files_nested, processed_data_path):
output_dir = processed_data_path
if files_nested:
x_test, Y = load_data_nested(output_dir)
else:
x_test, Y = load_data(output_dir)
new_model = tf.keras.models.load_model('sign-prediction/model.h5')
new_model.summary()
labels=load_label()
xhat = x_test
yhat = new_model.predict(xhat)
predictions = np.array([np.argmax(pred) for pred in yhat])
rev_labels = dict(zip(list(labels.values()), list(labels.keys())))
for idx, i in enumerate(predictions):
certainty = round(100*yhat[idx][predictions[idx]], 1)
print(Y[idx], " - ", rev_labels[i], ", ", certainty, "%")
# s = 0
# txtpath = processed_data_path + "result.txt"
# with open(txtpath, "w") as f:
# for i in predictions:
# f.write(Y[s])
# f.write(" ")
# f.write(rev_labels[i])
# f.write("\n")
# s += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Predict Sign language with Mediapipe')
parser.add_argument("--input_data_path",help=" ")
parser.add_argument("--output_data_path",help=" ")
args = parser.parse_args()
input_data_path = args.input_data_path
output_data_path = args.output_data_path
processed_data_path = output_data_path + "Relative/"
files_nested = True
parse_video_and_generate_files(input_data_path, output_data_path)
recogintion(files_nested, processed_data_path)