-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtrain.py
205 lines (170 loc) · 8.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os, sys
from opt import get_opts
import torch
from torch.utils.data import DataLoader
from datasets import dataset_dict
# models
from models.mvsnet import CascadeMVSNet
from inplace_abn import InPlaceABN
from torchvision import transforms as T
# optimizer, scheduler, visualization
from utils import *
# losses
from losses import loss_dict
# metrics
from metrics import *
# pytorch-lightning
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.logging import TestTubeLogger
class MVSSystem(LightningModule):
def __init__(self, hparams):
super(MVSSystem, self).__init__()
self.hparams = hparams
# to unnormalize image for visualization
self.unpreprocess = T.Normalize(mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225],
std=[1/0.229, 1/0.224, 1/0.225])
self.loss = loss_dict[hparams.loss_type](hparams.levels)
self.model = CascadeMVSNet(n_depths=self.hparams.n_depths,
interval_ratios=self.hparams.interval_ratios,
num_groups=self.hparams.num_groups,
norm_act=InPlaceABN)
# if num gpu is 1, print model structure and number of params
if self.hparams.num_gpus == 1:
# print(self.model)
print('number of parameters : %.2f M' %
(sum(p.numel() for p in self.model.parameters() if p.requires_grad) / 1e6))
# load model if checkpoint path is provided
if self.hparams.ckpt_path != '':
print('Load model from', self.hparams.ckpt_path)
load_ckpt(self.model, self.hparams.ckpt_path, self.hparams.prefixes_to_ignore)
def decode_batch(self, batch):
imgs = batch['imgs']
proj_mats = batch['proj_mats']
depths = batch['depths']
masks = batch['masks']
init_depth_min = batch['init_depth_min']
depth_interval = batch['depth_interval']
return imgs, proj_mats, depths, masks, init_depth_min, depth_interval
def forward(self, imgs, proj_mats, init_depth_min, depth_interval):
return self.model(imgs, proj_mats, init_depth_min, depth_interval)
def prepare_data(self):
dataset = dataset_dict[self.hparams.dataset_name]
self.train_dataset = dataset(root_dir=self.hparams.root_dir,
split='train',
n_views=self.hparams.n_views,
levels=self.hparams.levels,
depth_interval=self.hparams.depth_interval)
self.val_dataset = dataset(root_dir=self.hparams.root_dir,
split='val',
n_views=self.hparams.n_views,
levels=self.hparams.levels,
depth_interval=self.hparams.depth_interval)
def configure_optimizers(self):
self.optimizer = get_optimizer(self.hparams, self.model)
scheduler = get_scheduler(self.hparams, self.optimizer)
return [self.optimizer], [scheduler]
def train_dataloader(self):
return DataLoader(self.train_dataset,
shuffle=True,
num_workers=4,
batch_size=self.hparams.batch_size,
pin_memory=True)
def val_dataloader(self):
return DataLoader(self.val_dataset,
shuffle=False,
num_workers=4,
batch_size=self.hparams.batch_size,
pin_memory=True)
def training_step(self, batch, batch_nb):
log = {'lr': get_learning_rate(self.optimizer)}
imgs, proj_mats, depths, masks, init_depth_min, depth_interval = \
self.decode_batch(batch)
results = self(imgs, proj_mats, init_depth_min, depth_interval)
log['train/loss'] = loss = self.loss(results, depths, masks)
with torch.no_grad():
if batch_nb == 0:
img_ = self.unpreprocess(imgs[0,0]).cpu() # batch 0, ref image
depth_gt_ = visualize_depth(depths['level_0'][0])
depth_pred_ = visualize_depth(results['depth_0'][0]*masks['level_0'][0])
prob = visualize_prob(results['confidence_0'][0]*masks['level_0'][0])
stack = torch.stack([img_, depth_gt_, depth_pred_, prob]) # (4, 3, H, W)
self.logger.experiment.add_images('train/image_GT_pred_prob',
stack, self.global_step)
depth_pred = results['depth_0']
depth_gt = depths['level_0']
mask = masks['level_0']
log['train/abs_err'] = abs_err = abs_error(depth_pred, depth_gt, mask).mean()
log['train/acc_1mm'] = acc_threshold(depth_pred, depth_gt, mask, 1).mean()
log['train/acc_2mm'] = acc_threshold(depth_pred, depth_gt, mask, 2).mean()
log['train/acc_4mm'] = acc_threshold(depth_pred, depth_gt, mask, 4).mean()
return {'loss': loss,
'progress_bar': {'train_abs_err': abs_err},
'log': log
}
def validation_step(self, batch, batch_nb):
log = {}
imgs, proj_mats, depths, masks, init_depth_min, depth_interval = \
self.decode_batch(batch)
results = self(imgs, proj_mats, init_depth_min, depth_interval)
log['val_loss'] = self.loss(results, depths, masks)
if batch_nb == 0:
img_ = self.unpreprocess(imgs[0,0]).cpu() # batch 0, ref image
depth_gt_ = visualize_depth(depths['level_0'][0])
depth_pred_ = visualize_depth(results['depth_0'][0]*masks['level_0'][0])
prob = visualize_prob(results['confidence_0'][0]*masks['level_0'][0])
stack = torch.stack([img_, depth_gt_, depth_pred_, prob]) # (4, 3, H, W)
self.logger.experiment.add_images('val/image_GT_pred_prob',
stack, self.global_step)
depth_pred = results['depth_0']
depth_gt = depths['level_0']
mask = masks['level_0']
log['val_abs_err'] = abs_error(depth_pred, depth_gt, mask).sum()
log['val_acc_1mm'] = acc_threshold(depth_pred, depth_gt, mask, 1).sum()
log['val_acc_2mm'] = acc_threshold(depth_pred, depth_gt, mask, 2).sum()
log['val_acc_4mm'] = acc_threshold(depth_pred, depth_gt, mask, 4).sum()
log['mask_sum'] = mask.float().sum()
return log
def validation_epoch_end(self, outputs):
mean_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
mask_sum = torch.stack([x['mask_sum'] for x in outputs]).sum()
mean_abs_err = torch.stack([x['val_abs_err'] for x in outputs]).sum() / mask_sum
mean_acc_1mm = torch.stack([x['val_acc_1mm'] for x in outputs]).sum() / mask_sum
mean_acc_2mm = torch.stack([x['val_acc_2mm'] for x in outputs]).sum() / mask_sum
mean_acc_4mm = torch.stack([x['val_acc_4mm'] for x in outputs]).sum() / mask_sum
return {'progress_bar': {'val_loss': mean_loss,
'val_abs_err': mean_abs_err},
'log': {'val/loss': mean_loss,
'val/abs_err': mean_abs_err,
'val/acc_1mm': mean_acc_1mm,
'val/acc_2mm': mean_acc_2mm,
'val/acc_4mm': mean_acc_4mm,
}
}
if __name__ == '__main__':
hparams = get_opts()
system = MVSSystem(hparams)
checkpoint_callback = ModelCheckpoint(filepath=os.path.join(f'ckpts/{hparams.exp_name}',
'{epoch:02d}'),
monitor='val/acc_2mm',
mode='max',
save_top_k=5,)
logger = TestTubeLogger(
save_dir="logs",
name=hparams.exp_name,
debug=False,
create_git_tag=False
)
trainer = Trainer(max_epochs=hparams.num_epochs,
checkpoint_callback=checkpoint_callback,
logger=logger,
early_stop_callback=None,
weights_summary=None,
progress_bar_refresh_rate=1,
gpus=hparams.num_gpus,
distributed_backend='ddp' if hparams.num_gpus>1 else None,
num_sanity_val_steps=0 if hparams.num_gpus>1 else 5,
benchmark=True,
precision=16 if hparams.use_amp else 32,
amp_level='O1')
trainer.fit(system)