-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathinfomax_gan_64.py
139 lines (112 loc) · 5.31 KB
/
infomax_gan_64.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
Implementation of InfoMax-GAN for image size 64.
"""
import torch
import torch.nn as nn
from torch_mimicry.nets.infomax_gan import infomax_gan_base
from torch_mimicry.modules.layers import SNConv2d, SNLinear
from torch_mimicry.modules.resblocks import DBlockOptimized, DBlock, GBlock
class InfoMaxGANGenerator64(infomax_gan_base.InfoMaxGANBaseGenerator):
r"""
ResNet backbone generator for InfoMax-GAN.
Attributes:
nz (int): Noise dimension for upsampling.
ngf (int): Variable controlling generator feature map sizes.
bottom_width (int): Starting width for upsampling generator output to an image.
loss_type (str): Name of loss to use for GAN loss.
infomax_loss_scale (float): The alpha parameter used for scaling the generator infomax loss.
"""
def __init__(self, nz=128, ngf=1024, bottom_width=4, **kwargs):
super().__init__(nz=nz, ngf=ngf, bottom_width=bottom_width, **kwargs)
# Build the layers
self.l1 = nn.Linear(self.nz, (self.bottom_width**2) * self.ngf)
self.block2 = GBlock(self.ngf, self.ngf >> 1, upsample=True)
self.block3 = GBlock(self.ngf >> 1, self.ngf >> 2, upsample=True)
self.block4 = GBlock(self.ngf >> 2, self.ngf >> 3, upsample=True)
self.block5 = GBlock(self.ngf >> 3, self.ngf >> 4, upsample=True)
self.b6 = nn.BatchNorm2d(self.ngf >> 4)
self.c6 = nn.Conv2d(self.ngf >> 4, 3, 3, 1, padding=1)
self.activation = nn.ReLU(True)
# Initialise the weights
nn.init.xavier_uniform_(self.l1.weight.data, 1.0)
nn.init.xavier_uniform_(self.c6.weight.data, 1.0)
def forward(self, x):
r"""
Feedforwards a batch of noise vectors into a batch of fake images.
Args:
x (Tensor): A batch of noise vectors of shape (N, nz).
Returns:
Tensor: A batch of fake images of shape (N, C, H, W).
"""
h = self.l1(x)
h = h.view(x.shape[0], -1, self.bottom_width, self.bottom_width)
h = self.block2(h)
h = self.block3(h)
h = self.block4(h)
h = self.block5(h)
h = self.b6(h)
h = self.activation(h)
h = torch.tanh(self.c6(h))
return h
class InfoMaxGANDiscriminator64(infomax_gan_base.BaseDiscriminator):
r"""
ResNet backbone discriminator for InfoMax-GAN.
Attributes:
nrkhs (int): The RKHS dimension R to project the local and global features to.
ndf (int): Variable controlling discriminator feature map sizes.
loss_type (str): Name of loss to use for GAN loss.
infomax_loss_scale (float): The beta parameter used for scaling the discriminator infomax loss.
"""
def __init__(self, nrkhs=1024, ndf=1024, **kwargs):
super().__init__(nrkhs=nrkhs, ndf=ndf, **kwargs)
# Decide activation used
self.activation = nn.ReLU(True)
# ----------------
# GAN Layers
# ----------------
self.local_feat_blocks = nn.Sequential(
DBlockOptimized(3, self.ndf >> 4),
DBlock(self.ndf >> 4, self.ndf >> 3, downsample=True),
DBlock(self.ndf >> 3, self.ndf >> 2, downsample=True),
DBlock(self.ndf >> 2, self.ndf >> 1, downsample=True))
self.global_feat_blocks = nn.Sequential(
DBlock(self.ndf >> 1, self.ndf, downsample=True))
self.linear = SNLinear(self.ndf, 1)
nn.init.xavier_uniform_(self.linear.weight.data, 1.0)
# --------------------
# InfoMax Layers
# --------------------
# Critic network layers for local features
self.local_nrkhs_a = SNConv2d(self.ndf >> 1, self.ndf >> 1, 1, 1, 0)
self.local_nrkhs_b = SNConv2d(self.ndf >> 1, self.nrkhs, 1, 1, 0)
self.local_nrkhs_sc = SNConv2d(self.ndf >> 1, self.nrkhs, 1, 1, 0)
nn.init.xavier_uniform_(self.local_nrkhs_a.weight.data, 1.0)
nn.init.xavier_uniform_(self.local_nrkhs_b.weight.data, 1.0)
nn.init.xavier_uniform_(self.local_nrkhs_sc.weight.data, 1.0)
# Critic network layers for global features
self.global_nrkhs_a = SNLinear(self.ndf, self.ndf)
self.global_nrkhs_b = SNLinear(self.ndf, self.nrkhs)
self.global_nrkhs_sc = SNLinear(self.ndf, self.nrkhs)
nn.init.xavier_uniform_(self.global_nrkhs_a.weight.data, 1.0)
nn.init.xavier_uniform_(self.global_nrkhs_b.weight.data, 1.0)
nn.init.xavier_uniform_(self.global_nrkhs_sc.weight.data, 1.0)
def forward(self, x):
r"""
Feedforwards a batch of real/fake images and produces a batch of GAN logits,
local features of the images, and global features of the images.
Args:
x (Tensor): A batch of images of shape (N, C, H, W).
Returns:
Tensor: A batch of GAN logits of shape (N, 1).
Tensor: A batch of local features of shape (N, ndf, H>>2, W>>2).
Tensor: A batch of global features of shape (N, ndf)
"""
h = x
# Get features
local_feat = self.local_feat_blocks(h) # (N, C, H, W)
global_feat = self.global_feat_blocks(local_feat)
global_feat = self.activation(global_feat)
global_feat = torch.sum(global_feat, dim=(2, 3))
# GAN task output
output = self.linear(global_feat)
return output, local_feat, global_feat