-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathutils.py
939 lines (740 loc) · 30.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
from numpy.random import seed
seed(1017)
from tensorflow import set_random_seed
set_random_seed(1017)
import os
from glob import glob
from collections import OrderedDict
import mne
from mne.io import RawArray
from mne import read_evokeds, read_source_spaces, compute_covariance
from mne import channels, find_events, concatenate_raws
from mne import pick_types, viz, io, Epochs, create_info
from mne import pick_channels, concatenate_epochs
from mne.datasets import sample
from mne.simulation import simulate_sparse_stc, simulate_raw
from mne.channels import read_montage
from mne.time_frequency import tfr_morlet
import numpy as np
from numpy import genfromtxt
import pandas as pd
pd.options.display.precision = 4
pd.options.display.max_columns = None
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (12,12)
import keras
from keras import regularizers
from keras.callbacks import TensorBoard
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Activation, Input
from keras.layers import Flatten, Conv2D, MaxPooling2D, LSTM
from keras.layers import BatchNormalization, Conv3D, MaxPooling3D
from sklearn.utils import class_weight
from sklearn.model_selection import train_test_split
class Feats:
def __init__(self, num_classes=2, class_weights=[1,1], input_shape=[16,],
new_times=1, model_type='1',
x_train=1, y_train=1, x_test=1, y_test=1, x_val=1, y_val=1):
self.num_classes = num_classes
self.class_weights = class_weights
self.input_shape = input_shape
self.new_times = new_times
self.model_type = model_type
self.x_train = x_train
self.y_train = y_train
self.x_test = x_test
self.y_test = y_test
self.x_val = x_val
self.y_val = y_val
def LoadBVData(sub,session,data_dir,exp):
#for isub,sub in enumerate(subs):
print('Loading data for subject number: ' + sub)
fname = data_dir + exp + '/' + sub + '_' + exp + '_' + session + '.vhdr'
raw,sfreq = loadBV(fname,plot_sensors=False,plot_raw=False,
plot_raw_psd=False,stim_channel=True)
return raw
def loadBV(filename, plot_sensors=True, plot_raw=True,
plot_raw_psd=True, stim_channel=False, ):
"""Load in recorder data files."""
#load .vhdr files from brain vision recorder
raw = io.read_raw_brainvision(filename,
montage='standard_1020',
eog=('HEOG', 'VEOG'),
preload=True,stim_channel=stim_channel)
#set sampling rate
sfreq = raw.info['sfreq']
print('Sampling Rate = ' + str(sfreq))
#load channel locations
print('Loading Channel Locations')
if plot_sensors:
raw.plot_sensors(show_names='True')
##Plot raw data
if plot_raw:
raw.plot(n_channels=16, block=True)
#plot raw psd
if plot_raw_psd:
raw.plot_psd(fmin=.1, fmax=100 )
return raw, sfreq
def LoadMuseData(subs, nsesh, data_dir, load_verbose=False, sfreq=256.):
nsubs = len(subs)
raw = []
print('Loading Data')
for isub,sub in enumerate(subs):
print('Subject number ' + str(isub+1) + '/' + str(nsubs))
for isesh in range(nsesh):
print(' Session number ' + str(isesh+1) + '/' + str(nsesh))
raw.append(muse_load_data(data_dir, sfreq=sfreq ,subject_nb=sub,
session_nb=isesh+1,verbose=load_verbose))
raw = concatenate_raws(raw)
return raw
#from eeg-notebooks load_data
def muse_load_data(data_dir, subject_nb=1, session_nb=1, sfreq=256.,
ch_ind=[0, 1, 2, 3], stim_ind=5, replace_ch_names=None,
verbose=1):
"""Load CSV files from the /data directory into a Raw object.
Args:
data_dir (str): directory inside /data that contains the
CSV files to load, e.g., 'auditory/P300'
Keyword Args:
subject_nb (int or str): subject number. If 'all', load all
subjects.
session_nb (int or str): session number. If 'all', load all
sessions.
sfreq (float): EEG sampling frequency
ch_ind (list): indices of the EEG channels to keep
stim_ind (int): index of the stim channel
replace_ch_names (dict or None): dictionary containing a mapping to
rename channels. Useful when an external electrode was used.
Returns:
(mne.io.array.array.RawArray): loaded EEG
"""
if subject_nb == 'all':
subject_nb = '*'
if session_nb == 'all':
session_nb = '*'
data_path = os.path.join(
'eeg-notebooks_v0.1/data', data_dir,
'subject{}/session{}/*.csv'.format(subject_nb, session_nb))
fnames = glob(data_path)
return load_muse_csv_as_raw(fnames,
sfreq=sfreq,
ch_ind=ch_ind,
stim_ind=stim_ind,
replace_ch_names=replace_ch_names,
verbose=verbose)
#from eeg-notebooks
def load_muse_csv_as_raw(filename, sfreq=256., ch_ind=[0, 1, 2, 3],
stim_ind=5, replace_ch_names=None, verbose=1):
"""Load CSV files into a Raw object.
Args:
filename (str or list): path or paths to CSV files to load
Keyword Args:
subject_nb (int or str): subject number. If 'all', load all
subjects.
session_nb (int or str): session number. If 'all', load all
sessions.
sfreq (float): EEG sampling frequency
ch_ind (list): indices of the EEG channels to keep
stim_ind (int): index of the stim channel
replace_ch_names (dict or None): dictionary containing a mapping to
rename channels. Useful when an external electrode was used.
Returns:
(mne.io.array.array.RawArray): loaded EEG
"""
n_channel = len(ch_ind)
raw = []
for fname in filename:
# read the file
data = pd.read_csv(fname, index_col=0)
# name of each channels
ch_names = list(data.columns)[0:n_channel] + ['Stim']
if replace_ch_names is not None:
ch_names = [c if c not in replace_ch_names.keys()
else replace_ch_names[c] for c in ch_names]
# type of each channels
ch_types = ['eeg'] * n_channel + ['stim']
montage = read_montage('standard_1005')
# get data and exclude Aux channel
data = data.values[:, ch_ind + [stim_ind]].T
# convert in Volts (from uVolts)
data[:-1] *= 1e-6
# create MNE object
info = create_info(ch_names=ch_names, ch_types=ch_types,
sfreq=sfreq, montage=montage, verbose=verbose)
raw.append(RawArray(data=data, info=info, verbose=verbose))
# concatenate all raw objects
if len(raw) > 0:
raws = concatenate_raws(raw, verbose=verbose)
else:
print('No files for subject with filename ' + str(filename))
raws = raw
return raws
def SimulateRaw(amp1 = 50, amp2 = 100, freq = 1., batch=1):
"""Create simulated raw data and events of two kinds
Keyword Args:
amp1 (float): amplitude of first condition effect
amp2 (float): ampltiude of second condition effect,
null hypothesis amp1=amp2
freq (float): Frequency of simulated signal 1. for ERP 10. for alpha
batch (int): number of groups of 255 trials in each condition
Returns:
raw: simulated EEG MNE raw object with two event types
event_id: dict of the two events for input to PreProcess()
"""
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
trans_fname = data_path + '/MEG/sample/sample_audvis_raw-trans.fif'
src_fname = data_path + '/subjects/sample/bem/sample-oct-6-src.fif'
bem_fname = (data_path +
'/subjects/sample/bem/sample-5120-5120-5120-bem-sol.fif')
raw_single = mne.io.read_raw_fif(raw_fname,preload=True)
raw_single.set_eeg_reference(projection=True)
raw_single = raw_single.crop(0., 255.)
raw_single = raw_single.copy().pick_types(meg=False, eeg=True, eog=True, stim=True)
#concatenate 4 raws together to make 1000 trials
raw = []
for i in range(batch):
raw.append(raw_single)
raw = concatenate_raws(raw)
epoch_duration = 1.
def data_fun(amp, freq):
"""Create function to create fake signal"""
def data_fun_inner(times):
"""Create fake signal with no noise"""
n_samp = len(times)
window = np.zeros(n_samp)
start, stop = [int(ii * float(n_samp) / 2)
for ii in (0, 1)]
window[start:stop] = np.hamming(stop - start)
data = amp * 1e-9 * np.sin(2. * np.pi * freq * times)
data *= window
return data
return data_fun_inner
times = raw.times[:int(raw.info['sfreq'] * epoch_duration)]
src = read_source_spaces(src_fname)
stc_zero = simulate_sparse_stc(src, n_dipoles=1, times=times,
data_fun=data_fun(amp1,freq), random_state=0)
stc_one = simulate_sparse_stc(src, n_dipoles=1, times=times,
data_fun=data_fun(amp2,freq), random_state=0)
raw_sim_zero = simulate_raw(raw, stc_zero, trans_fname, src, bem_fname,
cov='simple', blink=True, n_jobs=1, verbose=True)
raw_sim_one = simulate_raw(raw, stc_one, trans_fname, src, bem_fname,
cov='simple', blink=True, n_jobs=1, verbose=True)
stim_pick = raw_sim_one.info['ch_names'].index('STI 014')
raw_sim_one._data[stim_pick][np.where(raw_sim_one._data[stim_pick]==1)] = 2
raw = concatenate_raws([raw_sim_zero, raw_sim_one])
event_id = {'CondZero': 1,'CondOne': 2}
return raw, event_id
def mastoidReref(raw):
ref_idx = pick_channels(raw.info['ch_names'],['M2'])
eeg_idx = pick_types(raw.info,eeg=True)
raw._data[eeg_idx,:] = raw._data[eeg_idx,:] - raw._data[ref_idx,:] * .5 ;
return raw
def GrattonEmcpRaw(raw):
raw_eeg = raw.copy().pick_types(eeg=True)[:][0]
raw_eog = raw.copy().pick_types(eog=True)[:][0]
b = np.linalg.solve(np.dot(raw_eog,raw_eog.T), np.dot(raw_eog,raw_eeg.T))
eeg_corrected = (raw_eeg.T - np.dot(raw_eog.T,b)).T
raw_new = raw.copy()
raw_new._data[pick_types(raw.info,eeg=True),:] = eeg_corrected
return raw_new
def GrattonEmcpEpochs(epochs):
'''
# Correct EEG data for EOG artifacts with regression
# INPUT - MNE epochs object (with eeg and eog channels)
# OUTPUT - MNE epochs object (with eeg corrected)
# After: Gratton,Coles,Donchin, 1983
# -compute the ERP in each condition
# -subtract ERP from each trial
# -subtract baseline (mean over all epoch)
# -predict eye channel remainder from eeg remainder
# -use coefficients to subtract eog from eeg
'''
event_names = ['A_error','B_error']
i = 0
for key, value in sorted(epochs.event_id.items(), key=lambda x: (x[1], x[0])):
event_names[i] = key
i += 1
#select the correct channels and data
eeg_chans = pick_types(epochs.info, eeg=True, eog=False)
eog_chans = pick_types(epochs.info, eeg=False, eog=True)
original_data = epochs._data
#subtract the average over trials from each trial
rem = {}
for event in event_names:
data = epochs[event]._data
avg = np.mean(epochs[event]._data,axis=0)
rem[event] = data-avg
#concatenate trials together of different types
## then put them all back together in X (regression on all at once)
allrem = np.concatenate([rem[event] for event in event_names])
#separate eog and eeg
X = allrem[:,eeg_chans,:]
Y = allrem[:,eog_chans,:]
#subtract mean over time from every trial/channel
X = (X.T - np.mean(X,2).T).T
Y = (Y.T - np.mean(Y,2).T).T
#move electrodes first
X = np.moveaxis(X,0,1)
Y = np.moveaxis(Y,0,1)
#make 2d and compute regression
X = np.reshape(X,(X.shape[0],np.prod(X.shape[1:])))
Y = np.reshape(Y,(Y.shape[0],np.prod(Y.shape[1:])))
b = np.linalg.solve(np.dot(Y,Y.T), np.dot(Y,X.T))
#get original data and electrodes first for matrix math
raw_eeg = np.moveaxis(original_data[:,eeg_chans,:],0,1)
raw_eog = np.moveaxis(original_data[:,eog_chans,:],0,1)
#subtract weighted eye channels from eeg channels
eeg_corrected = (raw_eeg.T - np.dot(raw_eog.T,b)).T
#move back to match epochs
eeg_corrected = np.moveaxis(eeg_corrected,0,1)
#copy original epochs and replace with corrected data
epochs_new = epochs.copy()
epochs_new._data[:,eeg_chans,:] = eeg_corrected
return epochs_new
def PreProcess(raw, event_id, plot_psd=False, filter_data=True,
filter_range=(1,30), plot_events=False, epoch_time=(-.2,1),
baseline=(-.2,0), rej_thresh_uV=200, rereference=False,
emcp_raw=False, emcp_epochs=False, epoch_decim=1, plot_electrodes=False,
plot_erp=False):
sfreq = raw.info['sfreq']
#create new output freq for after epoch or wavelet decim
nsfreq = sfreq/epoch_decim
tmin=epoch_time[0]
tmax=epoch_time[1]
if filter_range[1] > nsfreq:
filter_range[1] = nsfreq/2.5 #lower than 2 to avoid aliasing from decim??
#pull event names in order of trigger number
event_names = ['A_error','B_error']
i = 0
for key, value in sorted(event_id.items(), key=lambda x: (x[1], x[0])):
event_names[i] = key
i += 1
#Filtering
if rereference:
print('Rerefering to average mastoid')
raw = mastoidReref(raw)
if filter_data:
print('Filtering Data Between ' + str(filter_range[0]) +
' and ' + str(filter_range[1]) + ' Hz.')
raw.filter(filter_range[0],filter_range[1],
method='iir', verbose='WARNING' )
if plot_psd:
raw.plot_psd(fmin=filter_range[0], fmax=nsfreq/2 )
#Eye Correction
if emcp_raw:
print('Raw Eye Movement Correction')
raw = GrattonEmcpRaw(raw)
#Epoching
events = find_events(raw,shortest_event=1)
color = {1: 'red', 2: 'black'}
#artifact rejection
rej_thresh = rej_thresh_uV*1e-6
#plot event timing
if plot_events:
viz.plot_events(events, sfreq, raw.first_samp, color=color,
event_id=event_id)
#Construct events - Main function from MNE
epochs = Epochs(raw, events=events, event_id=event_id,
tmin=tmin, tmax=tmax, baseline=baseline,
preload=True,reject={'eeg':rej_thresh},
verbose=False, decim=epoch_decim)
print('Remaining Trials: ' + str(len(epochs)))
#Gratton eye movement correction procedure on epochs
if emcp_epochs:
print('Epochs Eye Movement Correct')
epochs = GrattonEmcpEpochs(epochs)
## plot ERP at each electrode
evoked_dict = {event_names[0]:epochs[event_names[0]].average(),
event_names[1]:epochs[event_names[1]].average()}
# butterfly plot
if plot_electrodes:
picks = pick_types(evoked_dict[event_names[0]].info, meg=False, eeg=True, eog=False)
fig_zero = evoked_dict[event_names[0]].plot(spatial_colors=True,picks=picks)
fig_zero = evoked_dict[event_names[1]].plot(spatial_colors=True,picks=picks)
# plot ERP in each condition on same plot
if plot_erp:
#find the electrode most miximal on the head (highest in z)
picks = np.argmax([evoked_dict[event_names[0]].info['chs'][i]['loc'][2]
for i in range(len(evoked_dict[event_names[0]].info['chs']))])
colors = {event_names[0]:"Red",event_names[1]:"Blue"}
viz.plot_compare_evokeds(evoked_dict,colors=colors,
picks=picks,split_legend=True)
return epochs
def FeatureEngineer(epochs, model_type='NN',
frequency_domain=False,
normalization=False, electrode_median=False,
wavelet_decim=1, flims=(3,30), include_phase=False,
f_bins=20, wave_cycles=3,
wavelet_electrodes = [11,12,13,14,15],
spect_baseline=[-1,-.5],
test_split = 0.2, val_split = 0.2,
random_seed=1017, watermark = False):
"""
Takes epochs object as
input and settings,
outputs feats(training, test and val data option to use frequency or time domain)
TODO: take tfr? or autoencoder encoded object?
FeatureEngineer(epochs, model_type='NN',
frequency_domain=False,
normalization=False, electrode_median=False,
wavelet_decim=1, flims=(3,30), include_phase=False,
f_bins=20, wave_cycles=3,
wavelet_electrodes = [11,12,13,14,15],
spect_baseline=[-1,-.5],
test_split = 0.2, val_split = 0.2,
random_seed=1017, watermark = False):
"""
np.random.seed(random_seed)
#pull event names in order of trigger number
epochs.event_id = {'cond0':1, 'cond1':2}
event_names = ['cond0','cond1']
i = 0
for key, value in sorted(epochs.event_id.items(),
key=lambda item: (item[1],item[0])):
event_names[i] = key
i += 1
#Create feats object for output
feats = Feats()
feats.num_classes = len(epochs.event_id)
feats.model_type = model_type
if frequency_domain:
print('Constructing Frequency Domain Features')
#list of frequencies to output
f_low = flims[0]
f_high = flims[1]
frequencies = np.linspace(f_low, f_high, f_bins, endpoint=True)
#option to select all electrodes for fft
if wavelet_electrodes == 'all':
wavelet_electrodes = pick_types(epochs.info,eeg=True,eog=False)
#type of output from wavelet analysis
if include_phase:
tfr_output_type = 'complex'
else:
tfr_output_type = 'power'
tfr_dict = {}
for event in event_names:
print('Computing Morlet Wavelets on ' + event)
tfr_temp = tfr_morlet(epochs[event], freqs=frequencies,
n_cycles=wave_cycles, return_itc=False,
picks=wavelet_electrodes, average=False,
decim=wavelet_decim, output=tfr_output_type)
# Apply spectral baseline and find stim onset time
tfr_temp = tfr_temp.apply_baseline(spect_baseline,mode='mean')
stim_onset = np.argmax(tfr_temp.times>0)
# Reshape power output and save to tfr dict
power_out_temp = np.moveaxis(tfr_temp.data[:,:,:,stim_onset:],1,3)
power_out_temp = np.moveaxis(power_out_temp,1,2)
print(event + ' trials: ' + str(len(power_out_temp)))
tfr_dict[event] = power_out_temp
#reshape times (sloppy but just use the last temp tfr)
feats.new_times = tfr_temp.times[stim_onset:]
for event in event_names:
print(event + ' Time Points: ' + str(len(feats.new_times)))
print(event + ' Frequencies: ' + str(len(tfr_temp.freqs)))
#Construct X and Y
for ievent,event in enumerate(event_names):
if ievent == 0:
X = tfr_dict[event]
Y_class = np.zeros(len(tfr_dict[event]))
else:
X = np.append(X,tfr_dict[event],0)
Y_class = np.append(Y_class,np.ones(len(tfr_dict[event]))*ievent,0)
#concatenate real and imaginary data
if include_phase:
print('Concatenating the real and imaginary components')
X = np.append(np.real(X),np.imag(X),2)
#compute median over electrodes to decrease features
if electrode_median:
print('Computing Median over electrodes')
X = np.expand_dims(np.median(X,axis=len(X.shape)-1),2)
#reshape for various models
if model_type == 'NN' or model_type == 'LSTM':
X = np.reshape(X, (X.shape[0], X.shape[1], np.prod(X.shape[2:])))
if model_type == 'CNN3D':
X = np.expand_dims(X,4)
if model_type == 'AUTO' or model_type == 'AUTODeep':
print('Auto model reshape')
X = np.reshape(X, (X.shape[0],np.prod(X.shape[1:])))
if not frequency_domain:
print('Constructing Time Domain Features')
#if using muse aux port as eeg must label it as such
eeg_chans = pick_types(epochs.info,eeg=True,eog=False)
#put channels last, remove eye and stim
X = np.moveaxis(epochs._data[:,eeg_chans,:],1,2);
#take post baseline only
stim_onset = np.argmax(epochs.times>0)
feats.new_times = epochs.times[stim_onset:]
X = X[:,stim_onset:,:]
#convert markers to class
#requires markers to be 1 and 2 in data file?
#This probably is not robust to other marker numbers
Y_class = epochs.events[:,2]-1 #subtract 1 to make 0 and 1
#median over electrodes to reduce features
if electrode_median:
print('Computing Median over electrodes')
X = np.expand_dims(np.median(X,axis=len(X.shape)-1),2)
## Model Reshapes:
# reshape for CNN
if model_type == 'CNN':
print('Size X before reshape for CNN: ' + str(X.shape))
X = np.expand_dims(X,3 )
print('Size X before reshape for CNN: ' + str(X.shape))
# reshape for CNN3D
if model_type == 'CNN3D':
print('Size X before reshape for CNN3D: ' + str(X.shape))
X = np.expand_dims(np.expand_dims(X,3),4)
print('Size X before reshape for CNN3D: ' + str(X.shape))
#reshape for autoencoder
if model_type == 'AUTO' or model_type == 'AUTODeep':
print('Size X before reshape for Auto: ' + str(X.shape))
X = np.reshape(X, (X.shape[0], np.prod(X.shape[1:])))
print('Size X after reshape for Auto: ' + str(X.shape))
#Normalize X - TODO: need to save mean and std for future test + val
if normalization:
print('Normalizing X')
X = (X - np.mean(X)) / np.std(X)
# convert class vectors to one hot Y and recast X
Y = keras.utils.to_categorical(Y_class,feats.num_classes)
X = X.astype('float32')
# add watermark for testing models
if watermark:
X[Y[:,0]==0,0:2,] = 0
X[Y[:,0]==1,0:2,] = 1
# Compute model input shape
feats.input_shape = X.shape[1:]
# Split training test and validation data
val_prop = val_split / (1-test_split)
(feats.x_train,
feats.x_test,
feats.y_train,
feats.y_test) = train_test_split(X, Y,
test_size=test_split,
random_state=random_seed)
(feats.x_train,
feats.x_val,
feats.y_train,
feats.y_val) = train_test_split(feats.x_train, feats.y_train,
test_size=val_prop,
random_state=random_seed)
#compute class weights for uneven classes
y_ints = [y.argmax() for y in feats.y_train]
feats.class_weights = class_weight.compute_class_weight('balanced',
np.unique(y_ints),
y_ints)
#Print some outputs
print('Combined X Shape: ' + str(X.shape))
print('Combined Y Shape: ' + str(Y_class.shape))
print('Y Example (should be 1s & 0s): ' + str(Y_class[0:10]))
print('X Range: ' + str(np.min(X)) + ':' + str(np.max(X)))
print('Input Shape: ' + str(feats.input_shape))
print('x_train shape:', feats.x_train.shape)
print(feats.x_train.shape[0], 'train samples')
print(feats.x_test.shape[0], 'test samples')
print(feats.x_val.shape[0], 'validation samples')
print('Class Weights: ' + str(feats.class_weights))
return feats
def CreateModel(feats,units=[16,8,4,8,16], dropout=.25,
batch_norm=True, filt_size=3, pool_size=2):
print('Creating ' + feats.model_type + ' Model')
print('Input shape: ' + str(feats.input_shape))
nunits = len(units)
##---LSTM - Many to two, sequence of time to classes
#Units must be at least two
if feats.model_type == 'LSTM':
if nunits < 2:
print('Warning: Need at least two layers for LSTM')
model = Sequential()
model.add(LSTM(input_shape=(None, feats.input_shape[1]),
units=units[0], return_sequences=True))
if batch_norm:
model.add(BatchNormalization())
model.add(Activation('relu'))
if dropout:
model.add(Dropout(dropout))
if len(units) > 2:
for unit in units[1:-1]:
model.add(LSTM(units=unit,return_sequences=True))
if batch_norm:
model.add(BatchNormalization())
model.add(Activation('relu'))
if dropout:
model.add(Dropout(dropout))
model.add(LSTM(units=units[-1],return_sequences=False))
if batch_norm:
model.add(BatchNormalization())
model.add(Activation('relu'))
if dropout:
model.add(Dropout(dropout))
model.add(Dense(units=feats.num_classes))
model.add(Activation("softmax"))
##---DenseFeedforward Network
#Makes a hidden layer for each item in units
if feats.model_type == 'NN':
model = Sequential()
model.add(Flatten(input_shape=feats.input_shape))
for unit in units:
model.add(Dense(unit))
if batch_norm:
model.add(BatchNormalization())
model.add(Activation('relu'))
if dropout:
model.add(Dropout(dropout))
model.add(Dense(feats.num_classes, activation='softmax'))
##----Convolutional Network
if feats.model_type == 'CNN':
if nunits < 2:
print('Warning: Need at least two layers for CNN')
model = Sequential()
model.add(Conv2D(units[0], filt_size,
input_shape=feats.input_shape, padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size, padding='same'))
if nunits > 2:
for unit in units[1:-1]:
model.add(Conv2D(unit, filt_size, padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size, padding='same'))
model.add(Flatten())
model.add(Dense(units[-1]))
model.add(Activation('relu'))
model.add(Dense(feats.num_classes))
model.add(Activation('softmax'))
##----Convolutional Network
if feats.model_type == 'CNN3D':
if nunits < 2:
print('Warning: Need at least two layers for CNN')
model = Sequential()
model.add(Conv3D(units[0], filt_size,
input_shape=feats.input_shape, padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling3D(pool_size=pool_size, padding='same'))
if nunits > 2:
for unit in units[1:-1]:
model.add(Conv3D(unit, filt_size, padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling3D(pool_size=pool_size, padding='same'))
model.add(Flatten())
model.add(Dense(units[-1]))
model.add(Activation('relu'))
model.add(Dense(feats.num_classes))
model.add(Activation('softmax'))
## Autoencoder
#takes the first item in units for hidden layer size
if feats.model_type == 'AUTO':
encoding_dim = units[0]
input_data = Input(shape=(feats.input_shape[0],))
#,activity_regularizer=regularizers.l1(10e-5)
encoded = Dense(encoding_dim, activation='relu')(input_data)
decoded = Dense(feats.input_shape[0], activation='sigmoid')(encoded)
model = Model(input_data, decoded)
encoder = Model(input_data,encoded)
encoded_input = Input(shape=(encoding_dim,))
decoder_layer = model.layers[-1]
decoder = Model(encoded_input, decoder_layer(encoded_input))
#takes an odd number of layers > 1
#e.g. units = [64,32,16,32,64]
if feats.model_type == 'AUTODeep':
if nunits % 2 == 0:
print('Warning: Please enter odd number of layers into units')
half = nunits/2
midi = int(np.floor(half))
input_data = Input(shape=(feats.input_shape[0],))
encoded = Dense(units[0], activation='relu')(input_data)
#encoder decreases
if nunits >= 3:
for unit in units[1:midi]:
encoded = Dense(unit, activation='relu')(encoded)
#latent space
decoded = Dense(units[midi], activation='relu')(encoded)
#decoder increses
if nunits >= 3:
for unit in units[midi+1:-1]:
decoded = Dense(unit, activation='relu')(decoded)
decoded = Dense(units[-1], activation='relu')(decoded)
decoded = Dense(feats.input_shape[0], activation='sigmoid')(decoded)
model = Model(input_data, decoded)
encoder = Model(input_data,encoded)
encoded_input = Input(shape=(units[midi],))
if feats.model_type == 'AUTO' or feats.model_type == 'AUTODeep':
opt = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0.0, amsgrad=False)
model.compile(optimizer=opt, loss='mean_squared_error')
if ((feats.model_type == 'CNN') or
(feats.model_type == 'CNN3D') or
(feats.model_type == 'LSTM') or
(feats.model_type == 'NN')):
# initiate adam optimizer
opt = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0.0, amsgrad=False)
# Let's train the model using RMSprop
model.compile(loss='binary_crossentropy',
optimizer=opt,
metrics=['accuracy'])
encoder = []
model.summary()
return model, encoder
def TrainTestVal(model, feats, batch_size=2,
train_epochs=20, show_plots=True):
print('Training Model:')
# Train Model
if feats.model_type == 'AUTO' or feats.model_type == 'AUTODeep':
print('Training autoencoder:')
history = model.fit(feats.x_train, feats.x_train,
batch_size = batch_size,
epochs=train_epochs,
validation_data=(feats.x_val,feats.x_val),
shuffle=True,
verbose=True,
class_weight=feats.class_weights
)
# list all data in history
print(history.history.keys())
if show_plots:
# summarize history for loss
plt.semilogy(history.history['loss'])
plt.semilogy(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()
else:
history = model.fit(feats.x_train, feats.y_train,
batch_size=batch_size,
epochs=train_epochs,
validation_data=(feats.x_val, feats.y_val),
shuffle=True,
verbose=True,
class_weight=feats.class_weights
)
# list all data in history
print(history.history.keys())
if show_plots:
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()
# summarize history for loss
plt.semilogy(history.history['loss'])
plt.semilogy(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()
# Test on left out Test data
score, acc = model.evaluate(feats.x_test, feats.y_test,
batch_size=batch_size)
print(model.metrics_names)
print('Test loss:', score)
print('Test accuracy:', acc)
# Build a dictionary of data to return
data = {}
data['score'] = score
data['acc'] = acc
return model, data