В Python каждый класс может иметь атрибуты экземпляров. По умолчанию, Python использует словарь для хранения атрибутов объекта. Это очень удобно, поскольку позволяет добавлять новые атрибуты во время исполнения программы.
Однако, для небольших классов с известными атрибутами такой подход может стать
проблемой. Словари занимают большой объём оперативной памяти. Python не может
просто выделить заданное количество памяти при создании объекта для хранения
его атрибутов. Поэтому большое число объектов будет занимать много оперативной
памяти (я говорю о тысячах и миллионах). Тем не менее, существует способ
обойти эту проблему. Он включает использование __slots__
, чтобы Python не
создавал словари под хранение атрибутов, а выделял заданный объём памяти для
ограниченного числа атрибутов. Вот пример с использованием __slots__
и без:
Без __slots__
:
class MyClass(object):
def __init__(self, name, identifier):
self.name = name
self.identifier = identifier
self.set_up()
# ...
С использованием __slots__
:
class MyClass(object):
__slots__ = ['name', 'identifier']
def __init__(self, name, identifier):
self.name = name
self.identifier = identifier
self.set_up()
# ...
Второй пример кода уменьшит потребление оперативной памяти. Некоторые люди отмечают 40 и 50% сокращение потребления оперативной памяти при использовании этого решения.
Как вариант, вам может дать шанс PyPy. Он выполняет подобную оптимизацию по умолчанию.
Ниже я привожу пример замера потребления оперативной памяти "с" и без
использования __slots__
, выполненного в IPython, спасибо
https://github.com/ianozsvald/ipython_memory_usage
Python 3.4.3 (default, Jun 6 2015, 13:32:34)
Type "copyright", "credits" or "license" for more information.
IPython 4.0.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]: import ipython_memory_usage.ipython_memory_usage as imu
In [2]: imu.start_watching_memory()
In [2] used 0.0000 MiB RAM in 5.31s, peaked 0.00 MiB above current, total RAM usage 15.57 MiB
In [3]: %cat slots.py
class MyClass(object):
__slots__ = ['name', 'identifier']
def __init__(self, name, identifier):
self.name = name
self.identifier = identifier
num = 1024*256
x = [MyClass(1,1) for i in range(num)]
In [3] used 0.2305 MiB RAM in 0.12s, peaked 0.00 MiB above current, total RAM usage 15.80 MiB
In [4]: from slots import *
In [4] used 9.3008 MiB RAM in 0.72s, peaked 0.00 MiB above current, total RAM usage 25.10 MiB
In [5]: %cat noslots.py
class MyClass(object):
def __init__(self, name, identifier):
self.name = name
self.identifier = identifier
num = 1024*256
x = [MyClass(1,1) for i in range(num)]
In [5] used 0.1758 MiB RAM in 0.12s, peaked 0.00 MiB above current, total RAM usage 25.28 MiB
In [6]: from noslots import *
In [6] used 22.6680 MiB RAM in 0.80s, peaked 0.00 MiB above current, total RAM usage 47.95 MiB