-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrhd2000_dm_tb.v
271 lines (203 loc) · 6.04 KB
/
rhd2000_dm_tb.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*
Copyright (c) 2015 LeafLabs LLC
Author: Charlie Lamantia
Date: December 2015
Testbench for rhd2000_dm. Exercises all available SPI commands including
ADC data conversion via concatenated input array "analogIn".
*/
`timescale 1ns / 1ps
`define STARTDELAY 100
`include "llLib.v"
module rhd2000_dm_tb #(
parameter CHANNELS = 32,
parameter REVISION = 1,
parameter UNIPOLAR = 1,
parameter ID = 1
)();
////// unit under test //////
reg [511:0] analog;
reg nCs = 1;
reg sclk;
wire miso;
reg mosi = 0;
wire aux;
rhd2000_dm #(
.CHANNELS (CHANNELS ),
.REVISION (REVISION ),
.UNIPOLAR (UNIPOLAR ),
.ID (ID )
)
uut (
.analogIn (analog ),
.nCs (nCs ),
.sClk (sclk ),
.mosi (mosi ),
.miso (miso ),
.aux (aux )
);
////// read/write transaction //////
task SPI_TRANSACTION;
input [15:0] command;
output [15:0] return;
reg [3:0] bit;
reg [15:0] temp;
begin
nCs = 0;
bit = 4'd15;
repeat (16) begin
#20.8
mosi = command[bit];
#10.4;
sclk = 1;
temp[bit] = miso;
#20.8
sclk = 0;
bit = bit - 4'd1;
end
#41.6;
nCs = 1;
return = temp;
// minimum time between transactions
#154.0;
end
endtask
////// tests //////
// convert
task testConvert;
reg [15:0] channel;
reg [15:0] return;
reg [15:0] dummy;
begin
channel = 0;
dummy = { 2'b01, 6'b101010, 8'd0 };
SPI_TRANSACTION ( channel << 8, return); // read first channel, return X
channel = channel + 1;
SPI_TRANSACTION ( channel << 8, return); // read second channel, return X
repeat (32) begin
channel = channel + 1;
SPI_TRANSACTION (channel << 8, return); // channel itterator, valid returns
// assert
if (return != channel - 1) begin
$display("!TEST FAILED! Capture channel %d returned %b.", channel - 1, return);
end
end
end
endtask
// calibration
task testCalibration;
reg [15:0] calibrate;
reg [15:0] return;
reg [15:0] dummy;
integer itteration;
begin
calibrate = { 2'b01, 6'b010101, 8'b0 };
dummy = { 2'b01, 6'b101010, 8'b0 };
itteration = 0;
SPI_TRANSACTION (calibrate, return); // send calibration command, return x
repeat (10) begin
itteration = itteration + 1;
SPI_TRANSACTION (dummy, return); // 9 cycles of dummy
// assert
if (return != {1'b1, 15'b0}) begin
$display("!TEST FAILED! Calibration itteration %d returned %b", itteration, return);
end
end
end
endtask
// read/write
task testReadWrite;
reg [5:0] address;
reg [7:0] data;
reg [15:0] return;
reg [15:0] dummy;
begin
dummy = { 2'b01, 6'b101010, 8'b0 };
address = 0;
repeat (28) begin
data = llLib.RANDRANGE (255, 0); // generate random data
SPI_TRANSACTION ({ 2'b10, address, data }, return); // write to address, return X
SPI_TRANSACTION ({ 2'b11, address, 8'b0 }, return); // read from address, return X
SPI_TRANSACTION (dummy, return); // dummy, return written value
// assert (write return)
if (return != { {8{1'b1}}, data }) begin
$display ("!TEST FAILED! Address %d write returned incorrect value %b", address, return);
end
SPI_TRANSACTION (dummy, return); // dummy, return read value;
// assert (read return: ram)
if (address >= 0 && address <= 17) begin
if (return != { 8'b0, data }) begin
$display("!TEST FAILED! RAM %d read returned incorrect value %b", address, return);
end
if (address == 17) address = 40;
else address = address + 1;
end
// else assert (read return: rom intan)
else if (address >= 40 && address <= 44) begin
if (address == 40 && return != { 8'b0, "I" }) begin
$display("!TEST FAILED! ROM %d read returned incorrect value %b", address, return);
end
else if (address == 41 && return != { 8'b0, "N" }) begin
$display("!TEST FAILED! ROM %d read returned incorrect value %b", address, return);
end
else if (address == 42 && return != { 8'b0, "T" }) begin
$display("!TEST FAILED! ROM %d read returned incorrect value %b", address, return);
end
else if (address == 43 && return != { 8'b0, "A" }) begin
$display("!TEST FAILED! ROM %d read returned incorrect value %b", address, return);
end
else if (address == 44 && return != { 8'b0, "N" }) begin
$display("!TEST FAILED! ROM %d read returned incorrect value %b", address, return);
end
if (address == 44) address = 60;
else address = address + 1;
end
// else assert (read return: rom remainder)
else if (address >= 60 && address <= 63) begin
if (address == 60 && return != { 8'b0, REVISION[7:0] }) begin
$display("!TEST FAILED! ROM %d read returned incorrect value %b", address, return);
end
else if (address == 61 && return != { 8'b0, UNIPOLAR[7:0] }) begin
$display("!TEST FAILED! ROM %d read returned incorrect value %b", address, return);
end
else if (address == 62 && return != { 8'b0, CHANNELS[7:0] }) begin
$display("!TEST FAILED! ROM %d read returned incorrect value %b", address, return);
end
else if (address == 63 && return != { 8'b0, ID[7:0] }) begin
$display("!TEST FAILED! ROM %d read returned incorrect value %b", address, return);
end
address = address + 1;
end
end
end
endtask
////// initialization //////
reg [7:0] t = 16'd0;
initial begin
// iverilog boilerplate
$dumpfile("test.vcd");
$dumpvars(0, rhd2000_dm_tb); // tb module name
// controls
nCs <= 1;
mosi <= 0;
sclk <= 0;
// generate tags for each adc channel
// channel 0 will contain data 16'd1, 1 -> 16'd2, etc...
t = 16'd0;
repeat (33) begin
analog[(t - 1) * 16 +: 16] <= t;
#1;
t = t + 16'd1;
#1;
end
end
////// Main //////
always begin
$display("#--- STARTING ---# Testbench for Intan RHD2000 Data Model...");
#`STARTDELAY;
testConvert;
testCalibration;
testReadWrite;
$display("#--- FINISHED ---# RHD2000 Data Model.");
$finish;
end
endmodule