forked from pughlab/VisCap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVisCap.R
641 lines (554 loc) · 30.8 KB
/
VisCap.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
# VisCap: Visualize normalized capture coverage
# Generates heatmap of exon coverage from a directory of sample_interval_summary files
# By Trevor Pugh, March 2012 - April 2013
###########
#Libraries#
###########
library("cluster")
library("gplots")
library("zoo")
##########
#Defaults#
##########
svn.revision <- "$Id: VisCap.R 1372 2013-04-25 13:53:52Z tp908 $"
source('VisCap.cfg')
#lane_dir <- "\\\\rfanfs.research.partners.org\\NGS"
#out_dir <- "\\\\rfanfs.research.partners.org\\gigpad_clinical\\Facilities\\Laboratory of Molecular Medicine_4171303\\VisCap_Outputs"
#lane_dir <- "\\\\rfanfs.research.partners.org\\NGS"
#out_dir <- "\\\\rfanfs.research.partners.org\\gigpad_clinical\\Facilities\\Laboratory of Molecular Medicine_4171303\\VisCap_Outputs"
# interval_list_dir <- "\\\\Sfa6\\lmm$\\DEVELOPMENT\\ACTIVE_DEVELOPMENT\\NEXT_GEN_COPY_NUMBER\\VisCap\\interval_lists"
#explorer_file <- "C:\\Windows\\explorer.exe"
#cov_file_pattern <- ".target.cov.sample_interval_summary$"
#cov_field <- "_total_cvg"
#interval_file_pattern <- ".interval_list$"
#ylimits <- c(-2, 2)
#iqr_multiplier <- 3
#threshold.min_exons <- 1
#iterative.calling.limit <- 0 #Set to 0 to iterate until all failed samples are removed
#infer.batch.for.sub.out_dir <- TRUE #Set to FALSE to prompt users for output directory
#clobber.output.directory <- FALSE #Set to FALSE to stop run when output directory already exists
#Setting a path to data skips prompts. Set to FALSE for deployment.
#dev_dir <- "\\\\Sfa6\\lmm$\\DEVELOPMENT\\ACTIVE_DEVELOPMENT\\NEXT_GEN_COPY_NUMBER\\VisCap\\test_data"
dev_dir <- FALSE
###########
#Functions#
###########
#Modified winDialog function to run in non-interactive mode
winDialog.nonint <- function (type = c("ok", "okcancel", "yesno", "yesnocancel"), message)
{
#if (!interactive())
# stop("winDialog() cannot be used non-interactively")
type <- match.arg(type)
res <- .Internal(winDialog(type, message))
if (res == 10L)
return(invisible(NULL))
c("NO", "CANCEL", "YES", "OK")[res + 2L]
}
make_matrix_from_cov_files <- function(lane_dir, cov_file_pattern, cov_field) {
#Join all cov files into a single matrix
filenames <- list.files(lane_dir, full.names=TRUE, pattern=cov_file_pattern, recursive=TRUE)
print(filenames)
for(file in filenames) {
tab <- read.table(file, header=TRUE, sep ="\t", row.names=1)
col_name <- colnames(tab)[grep(cov_field, colnames(tab))]
#Make new matrix labelled with appropriate identifier
#new_head <- gsub(cov_field, "", col_name) #sample identifier only
new_head <- basename(gsub(cov_file_pattern, "", file)) #derive name from original filename
new <- matrix(tab[,col_name], dimnames=list(rownames(tab), new_head) )
#If this is the first file, make a new matrix. Otherwise, join it to the existing matrix using genome coordinates
if(file == filenames[1]) {
mat.cov <- new
} else {
mrg <- merge(new, mat.cov, by = "row.names", all = TRUE)
mat.cov <- as.matrix(mrg[-1])
rownames(mat.cov) <- mrg[,1]
}
}
#Remove any rows with NA entries
mat.cov <- mat.cov[complete.cases(mat.cov),]
#TODO: Provide warning if n% of probes are discarded (i.e. multiple panels are present)
# Extract fraction of total coverage assigned to each exon in each sample
# Note two possible methods, depending on preference for X-chromosome handling.
# mat.cov.totals <- colSums(mat.cov) #use X-chromosome for normalization
mat.cov.totals <- colSums(mat.cov[grep("X",rownames(mat.cov), invert=TRUE),]) # do not use X-chromosome for normalization
mat.frac_cov <- sweep(mat.cov, 2, mat.cov.totals, "/")
#Order columns alphanumerically
mat.frac_cov <- mat.frac_cov[,order(colnames(mat.frac_cov))]
return(mat.frac_cov)
}
load_interval_names <- function(interval_list_dir, interval_file_pattern) {
#Read interval list files and make lookup_table for genome coords and interval names
lookup = c()
filenames = list.files(interval_list_dir, full.names=TRUE, pattern=interval_file_pattern, recursive=FALSE)
for(file in filenames) {
tab = read.table(file, header=FALSE, comment.char = "@", sep="\t", stringsAsFactors=FALSE)
if(ncol(tab) < 4)
{stop("The interval file should have at least 4 columns, chromosome, start, end, and interval name, all tab separated.")}
colnames(tab) <- c("chr", "start", "end", "interval_name")
rownames(tab) <- paste(tab$chr, ":", tab$start, "-", tab$end, sep = "")
tab$interval_file <- file
lookup <- rbind(lookup, tab)
}
return(lookup)
}
annotate_interval_names <- function(coords, interval_lookup) {
#Add name column to mat containing interval name from lookup table, if provided
if(is.null(interval_lookup)) {
labels <- coords
} else {
matches <- match(coords, rownames(interval_lookup))
labels <- interval_lookup[matches, "interval_name"]
}
return(labels)
}
divide_by_batch_median <- function(mat) {
#Fractional coverage normalization by median across each exon
rmeds <- apply(mat, 1, median) ## calculate row medians
mat_norm <- sweep(mat, 1, rmeds, "/") ## divide each entry by row median
mat_norm <- mat_norm[complete.cases(mat_norm),] ##remove NA entries
return(mat_norm)
}
heatmap_by_chrom <- function(mat, analysis_name, ylimits, out_dir) {
#Limit matrix for plotting
mat[mat < min(ylimits)] <- min(ylimits)
mat[mat > max(ylimits)] <- max(ylimits)
# Plot heatmap for each chromosome, compare each exon's value/median ratio across samples, save to files
pdf(file=paste(out_dir, "/", analysis_name, ".pdf", sep=""))
#Per-chromosome plots
if(length(interval_lookup$chr[grep("chr",interval_lookup$chr)])!=0){chroms <- c("all",paste("chr",1:22,sep=""),"chrX","chrY", "chrMT", "chrM")}else{chroms = c("all", 1:22,"X","Y", "MT", "M")}
for(chr in chroms){
if(chr == "all") {
main_title <- "All Chromosomes"
matches <- rownames(mat)
} else {
main_title <- paste("Chromosome",chr)
matches <- grep(paste("^",chr,":",sep=""), rownames(mat))
}
if(length(matches) > 1) {
par("cex.main" = 0.5)
#Set heatmap color scale
steps = 100
color_scale = bluered(steps)
color_breaks = seq(ylimits[1], ylimits[2], by=(ylimits[2] - ylimits[1])/steps)
#color_breaks = seq(min(mat, na.rm = TRUE), max(mat, na.rm = TRUE), length.out=steps+1)
#exons by samples
#heatmap.2(mat[matches,], Rowv=NA, Colv=NA, scale="none", cexCol=0.5, cexRow=0.3, col=color_scale, breaks=color_breaks, dendrogram="none", main=title, symbreaks=TRUE, trace="none")
#samples vs exons
xlabels <- gsub("__", "\n", colnames(mat))
heatmap.2(
t(mat[matches,]),
Rowv = NA,
Colv = NA,
scale = "none",
cexCol = 0.5,
cexRow = 0.5,
col = color_scale,
breaks = color_breaks,
dendrogram = "none",
symbreaks = TRUE,
trace = "row",
tracecol = "black",
main = main_title,
labRow = xlabels,
labCol = NA
)
}
}
dev.off()
}
score_boxplot <- function(bplot, llim= log2(1/2), ulim=log2(3/2)) {
fail_lower_thresh <- bplot$stats[1,] < llim
fail_upper_thresh <- bplot$stats[5,] > ulim
fail <- as.logical(fail_lower_thresh + fail_upper_thresh)
qc_string <- gsub(TRUE, "FAIL", gsub(FALSE, "PASS", fail))
return(qc_string)
}
boxplot_cnv_matrix <- function(nmat, bplot_name, out_dir, ylimits, iqr_multiplier) {
plot_nmat <- nmat
plot_nmat[nmat < min(ylimits)] <- min(ylimits)
plot_nmat[nmat > max(ylimits)] <- max(ylimits)
pdf(file=paste(out_dir, "/", bplot_name, ".pdf", sep=""))
par(las=2, mar=c(12,4,4,2))
xlabels = sub("__", "\n", colnames(plot_nmat))
bplot <- boxplot(plot_nmat, range=iqr_multiplier, ylim=ylimits, srt=90, pch=16, cex.axis=0.6, names=xlabels, ylab="Log2 ratio sample/batch median")
bplot$names <- sub("\n", "__", bplot$names)
dev.off()
#Write boxplot information to separate file
bplot$qc <- score_boxplot(bplot)
bplot.out <- cbind(round(t(bplot$stats), 3), bplot$qc)
rownames(bplot.out) <- bplot$names
colnames(bplot.out) <- c("del_threshold", "Q1", "median", "Q3", "amp_threshold", "qc")
write.table(bplot.out, paste(out_dir, "/", bplot_name, ".xls", sep=""), quote = FALSE, sep = "\t", col.names = NA)
return(bplot)
}
filter_cnvs <- function(segs, threshold.min_exons, threshold.cnv_log2_cutoffs) {
#Apply consecutive exon filter
fsegs <- segs[(segs[,"CNV"] != 0) & (segs[,"Interval_count"] >= threshold.min_exons), , drop = FALSE]
#Apply zero in normal range filter
fsegs <- fsegs[(as.numeric(fsegs[,"Loss_threshold"]) < 0) & (as.numeric(fsegs[,"Gain_threshold"]) > 0),, drop = FALSE]
#Apply hard CNV threshold
fsegs <- fsegs[(as.numeric(fsegs[,"Median_log2ratio"]) < min(threshold.cnv_log2_cutoffs)) | (as.numeric(fsegs[,"Median_log2ratio"]) > max(threshold.cnv_log2_cutoffs)),, drop = FALSE]
return(fsegs)
}
call_cnvs <- function(nmat, ylimits, interval_lookup, threshold.min_exons, iqr_multiplier, threshold.cnv_log2_cutoffs, out_dir) {
#Plot boxplots to visualize ranges used to detect copy number variation
bplot <- boxplot_cnv_matrix(nmat, "QC_cnv_boxplot", out_dir, ylimits, iqr_multiplier)
#Set outlier thresholds by distribution test
#Use boxplot$stats so whiskers in pdf accurately represent thresholds used
lbound <- round(bplot$stats[1,], 3)
ubound <- round(bplot$stats[5,], 3)
batch_size <- dim(bplot$stats)[2]
#Use hard-threshold, if it is greater than boxplot thresholds
lbound[lbound > min(threshold.cnv_log2_cutoffs)] <- min(threshold.cnv_log2_cutoffs)
ubound[ubound < max(threshold.cnv_log2_cutoffs)] <- max(threshold.cnv_log2_cutoffs)
#Make matrix of thresholds
lbound_mat <- matrix(rep(lbound, dim(nmat)[1]), ncol=length(lbound), byrow=TRUE, dimnames=list(rownames(nmat),colnames(nmat)))
ubound_mat <- matrix(rep(ubound, dim(nmat)[1]), ncol=length(lbound), byrow=TRUE, dimnames=list(rownames(nmat),colnames(nmat)))
#Flag outliers
nmat_loutliers <- (nmat < lbound_mat) + 0 #Adding zero converts TRUE/FALSE to 1/0
nmat_uoutliers <- (nmat > ubound_mat) + 0 #Adding zero converts TRUE/FALSE to 1/0
#TODO: Estimate number of copies gained or lost (i.e. support -2 and +n)
#Make tracking matrix of all zero values then subtract copies lost and add copies gained
nmat_cnvs <- matrix(data = 0, nrow = dim(nmat)[1], ncol = dim(nmat)[2], dimnames = list(rownames(nmat),colnames(nmat)))
nmat_cnvs <- nmat_cnvs - nmat_loutliers + nmat_uoutliers
gene_exon <- annotate_interval_names(rownames(nmat_cnvs), interval_lookup)
write.table(cbind.data.frame(gene_exon, nmat_cnvs), paste(out_dir, "/", "cnv_boxplot_outliers", ".xls", sep=""), quote = FALSE, sep = "\t", col.names = NA)
#Merge consecutive calls and write out to file
all_fsegs <- c()
for(id in colnames(nmat_cnvs)) {
segs <- c()
segs.header <- c("Sample", "CNV", "Genome_start_interval", "Genome_end_interval", "Start_interval","End_interval", "Interval_count", "Min_log2ratio", "Median_log2ratio", "Max_log2ratio", "Loss_threshold", "Gain_threshold", "Batch_size")
if(length(interval_lookup$chr[grep("chr",interval_lookup$chr)])!=0){chroms <- c(paste("chr",1:22,sep=""),"chrX","chrY", "chrMT", "chrM")}else{chroms = c(1:22,"X","Y", "MT", "M")}
for(chr in chroms){
matches <- grep(paste("^",chr,":",sep=""), rownames(nmat))
if(length(matches) > 1) {
#Segmentation: Detect runs of consecutive copy number calls
rl <- rle(nmat_cnvs[matches, id])
values <- rl$values
lengths <- rl$lengths
starts <- c(rownames(nmat_cnvs[matches,])[1], names(rl$lengths[1:length(rl$lengths)-1]))
ends <- names(rl$values)
#Calculate rounded log2 ratios of intervals involved
log2s <- lapply(1:length(starts), function(x) round(nmat[(match(starts[x], names(nmat[,id])):match(ends[x], names(nmat[,id]))), id], 3))
log2s_min <- unlist(lapply(log2s, min))
log2s_med <- unlist(lapply(log2s, median))
log2s_max <- unlist(lapply(log2s, max))
#Report genome coordinate range
coordinates_part1 <- data.frame(strsplit(starts, "-"), stringsAsFactors = FALSE)[1,]
coordinates_part2 <- data.frame(strsplit(ends, "-"), stringsAsFactors = FALSE)[2,]
coordinates <- paste(coordinates_part1, coordinates_part2, sep="-")
#Lookup interval names
start_names <- annotate_interval_names(starts, interval_lookup)
end_names <- annotate_interval_names(ends, interval_lookup)
#Add threshold columns, ensure consistent header
segs <- rbind(segs, cbind(rep(id, length(values)), values, starts, ends, start_names, end_names, lengths, log2s_min, log2s_med, log2s_max, lbound_mat[1,id], ubound_mat[1,id], batch_size))
colnames(segs) <- segs.header
}
}
#Handle case where there are no cnvs on any chromosomes in any samples
if(is.null(segs)) {
segs <- matrix(data=rep(NA,length(segs.header)), ncol=length(segs.header), dimnames=list("", segs.header))[-1,,drop=FALSE]
}
#Filter segments
fsegs <- filter_cnvs(segs, threshold.min_exons, threshold.cnv_log2_cutoffs)
#Convert CNV type values to text
fsegs[,"CNV"] <- gsub("^1$", "Gain", fsegs[,"CNV"])
fsegs[,"CNV"] <- gsub("^-1$", "Loss", fsegs[,"CNV"])
#Convert infinite values to large, numerical value
large_value <- "10"
num_cols <- c("Min_log2ratio", "Median_log2ratio", "Max_log2ratio", "Loss_threshold", "Gain_threshold")
fsegs[,num_cols] <- gsub("Inf", large_value, fsegs[,num_cols])
#Number CNVs for later labeling on visual output
if(dim(fsegs)[1] > 0) {
CNV_id <- seq(1, dim(fsegs)[1])
} else {
CNV_id <- c()
}
fsegs <- cbind(fsegs[,1, drop=FALSE],
CNV_id,
fsegs[,2:dim(fsegs)[2], drop=FALSE])
#Write output for each sample
write.table(fsegs, paste(out_dir, "/", id, ".cnvs.xls", sep=""), quote = FALSE, sep = "\t", col.names = TRUE, row.names = FALSE)
#Add fsegs to master fsegs tracking matrix
all_fsegs <- rbind(all_fsegs, fsegs)
}
return(list(bplot, all_fsegs))
}
space_label_names <- function(label_names) {
spacer <- " "
if(length(label_names) > 1) {
alt_positions <- seq(from=2, to=length(label_names), by=2)
label_names[alt_positions] <- paste(label_names[alt_positions], spacer)
}
return(label_names)
}
exon_plot_per_sample <- function(nmat, ylimits, interval_lookup, cnv_bplot_and_calls, out_dir) {
#Extract thresholds and cnvs, determine intervals from genome coordinates
nmat_bplot <- cnv_bplot_and_calls[[1]]
nmat_fsegs <- cnv_bplot_and_calls[[2]]
#Limit matrix for plotting
nmat[nmat < ylimits[1]] <- ylimits[1]
nmat[nmat > ylimits[2]] <- ylimits[2]
for(name in colnames(nmat)) {
#Get exon names from interval lists
interval_names <- annotate_interval_names(rownames(nmat), interval_lookup)
#Plot all intervals, then plot by chromosome
pdf(file=paste(out_dir, "/", name, ".plot.pdf", sep=""))
if(length(interval_lookup$chr[grep("chr",interval_lookup$chr)])!=0){chroms <- c(".*",paste("chr",1:22,sep=""),"chrX","chrY")}else{chroms = c(".*", 1:22,"X","Y")}
for(chr in chroms) {
#Grep rownames with genome coordinates for desired chromosome, support chr1: and 1: formats
matches <- grep(paste("(^chr", chr, "|^", chr, "):", sep=""), rownames(nmat))
if(length(matches) > 1) {
nmat_chr <- nmat[matches, name, drop=FALSE]
#Different title and axes labeling for All vs individual chromosomes
if(chr == ".*") {
title <- "All chromosomes"
chrom_names <- sapply(rownames(nmat_chr), function(x) strsplit(x, ":")[[1]][1])
labels_rle <- rle(chrom_names)
#TODO: Find better method for spacing chromosome labels
labels_rle$values <- space_label_names(labels_rle$values)
#labels_rle$values <- rep("", length(labels_rle$values-1))
labels_size <- 0.6
draw_grid_lines <- FALSE
label_called_CNVs <- FALSE
} else {
title <- paste("Chromosome", chr)
#Convert genome coordinates to unique gene names
exon_names <- annotate_interval_names(rownames(nmat_chr), interval_lookup)
gene_names <- sapply(exon_names, function(x) strsplit(x, "_")[[1]][1])
#Replace NA gene_names with nearest non-NA value
gene_names <- na.locf(gene_names)
labels_rle <- rle(gene_names)
labels_size <- 1
draw_grid_lines <- TRUE
label_called_CNVs <- TRUE
}
#Plot formatting and command
shift <- -0.5 #shift for plotting gene guide lines
par(pch=16)
plot(nmat_chr, xlim=c(1 + shift,length(nmat_chr)), ylim=ylimits, main=title, ylab = "Log2 ratio sample/batch median", xaxt="n", xlab="")
mtext(name, line=3, cex=0.5, adj=0)
#Plot gene or chomosome grid lines
section_ends <- (unlist(lapply(seq(1:length(labels_rle$lengths)), function(x) sum(labels_rle$lengths[1:x]))))
section_starts <- c(1, section_ends[-length(section_ends)] + 1)
grid_marks <- section_starts + shift
grid_labels <- c(labels_rle$values)
if(draw_grid_lines == TRUE) {
abline(v=grid_marks, col="grey")
}
axis(1, las=3, at=grid_marks, labels=grid_labels, cex.axis=labels_size)
#Plot guidelines and thresholds
name_bplot <- nmat_bplot$stats[,nmat_bplot$names == name]
abline(h=0, col="black") #zero line
abline(h=c(log2(1/2), log2(3/2)), col="grey") #expected log2 ratios for single copy loss and gain
abline(h=name_bplot[c(1,5)], lty=2, col="black") #boxplot thresholds
abline(h=threshold.cnv_log2_cutoffs, col="black") #hard cnv log2 ratio thresholds
#Mark data points outside of ylimits and scaled to fit plot
off_scale <- as.numeric(which((nmat_chr <= ylimits[1]) | (nmat_chr >= ylimits[2])))
points(off_scale, nmat_chr[off_scale], pch=22)
#Color CNV data points
types <- matrix(byrow=TRUE, ncol=4,
dimnames=list(c(),
c("type", "col", "ypos.line", "ypos.label")),
data=c(
"Loss", "blue", -2, -2.1,
"Gain", "red", 2, 2.1))
segs <- nmat_fsegs[(nmat_fsegs[,"Sample"] == name),,drop=FALSE]
segs <- segs[(rownames(segs) %in% rownames(nmat_chr)),,drop=FALSE] #Filter to chromosome being plotted
start_indexes <- which(rownames(nmat_chr) %in% segs[,"Genome_start_interval"])
end_indexes <- which(rownames(nmat_chr) %in% segs[,"Genome_end_interval"])
if(length(start_indexes) > 0) {
segs <- cbind(segs, types[match(segs[,"CNV"], types[,"type"]),,drop=FALSE])
for(i in seq(1:length(start_indexes))) {
indexes <- seq(start_indexes[i], end_indexes[i])
#Plot colored points
points(indexes, nmat_chr[indexes], col=segs[i, "col"])
#Label called CNVs with identifier
if(label_called_CNVs == TRUE) {
segments(start_indexes[i] - 0.25,
as.numeric(segs[i, "ypos.line"]),
end_indexes[i] + 0.25,
as.numeric(segs[i, "ypos.line"]),
col="orange", lwd=5)
text(mean(c(start_indexes[i], end_indexes[i])),
as.numeric(segs[i, "ypos.label"]),
segs[i, "CNV_id"],
col="orange")
}
}
}
}
}
dev.off()
}
}
rescale_chrX <- function(nmat_badX, ylimits, iqr_multiplier, out_dir) {
#Isolate chromosome X, remove outlier probes
nmatX <- nmat_badX[grep("^X",rownames(nmat_badX)),]
if(dim(nmatX)[1] == 0) {
return(nmat_badX) # return original matrix if no probes are found on X chromosome
}
#Assign cases to clusters and scale medians to zero
# DEPRECATED METHOD: kmeans is mislead by outliers. multiple solutions possible.
# clusters <- kmeans(t(nmatX),2, nstart=1)
# cluster_med <- apply(clusters$centers, 1, median)
# scaling_factors <- cluster_med[clusters$cluster]
#CURRENT METHOD: "Partitioning Around Medoids" followed by calculation of cluster medians
clusters <- pam(t(nmatX), 2, cluster.only=TRUE)
cluster_med <- c()
for(i in 1:max(clusters)) {
cluster_med[i] <- median(nmatX[,clusters == i])
}
scaling_factors <- cluster_med[clusters]
nmatX_scaled <- sweep(nmatX, 2, scaling_factors, "-") ## subtract cluster median
#Plot pre- and post-scaled values, write to file
bplotX <- boxplot_cnv_matrix(nmatX, "QC_chrX_pre-scale", out_dir, ylimits, iqr_multiplier)
bplotX_scaled <- boxplot_cnv_matrix(nmatX_scaled, "QC_chrX_post-scale", out_dir, ylimits, iqr_multiplier)
#Infer sexes from two clusters of fractional coverage
farthest_from_zero <- abs(cluster_med) == max(abs(cluster_med))
if(cluster_med[farthest_from_zero] > 0) {
cluster_female <- farthest_from_zero
} else {
cluster_female <- !farthest_from_zero
}
sexes <- sapply(cluster_female[clusters], function(x) if(x){"Female"} else {"Male"})
names(sexes) <- names(clusters)
write.table(sexes, paste(out_dir, "sexes.xls", sep="/") , quote = FALSE, sep = "\t", col.names = FALSE)
#Overwrite unscaled X-chromosome values with new, scaled values
nmat <- nmat_badX
nmat[grep("^X",rownames(nmat)),] <- nmatX_scaled
return(nmat)
}
remove_failed_samples <- function(mat, cnv_bplot_and_calls) {
passes <- score_boxplot(cnv_bplot_and_calls)
mat.trimmed <- mat[,passes]
return(mat.trimmed)
}
###########
#Arguments#
###########
#Argument collection and parsing
arguments <- commandArgs(trailingOnly = TRUE)
if(length(arguments) == 1) {
if(dev_dir != FALSE) {
#Skips prompts if dev_dir is set
lane_dir <- dev_dir
out_dir <- dev_dir
} else {
#Collect input and output information from user
#Input directory
lane_dir <- choose.dir(caption = "Select a lane directory (e.g. L001):", default = lane_dir)
if(is.na(lane_dir)) {
try( winDialog.nonint(type="ok", "Run canceled. No input lane directory provided."), silent=TRUE)
q(save="no")
}
#Output diretory: Attempt to derive batch information from file name, prompt user if unsuccessful
file1 <- list.files(lane_dir, full.names=TRUE, pattern=cov_file_pattern, recursive=TRUE)[1]
batch.regex <- "__(B*[0-9]+)"
batch.match <- regexec(batch.regex, file1)[[1]]
batch <- substring(file1, batch.match[2], batch.match[2] + attr(batch.match, "match.length")[2] - 1)
if((infer.batch.for.sub.out_dir == FALSE) || is.na(batch)) {
out_dir <- choose.dir(caption = "Select an output directory:", default = out_dir)
batch <- basename(out_dir)
} else {
out_dir <- paste(out_dir, batch, sep="/")
}
if(is.na(out_dir)) {
try( winDialog.nonint(type="ok", "Run canceled. No output directory provided."), silent=TRUE)
q(save="no")
}
#If output directory already exists, prompt user to overwrite
if((clobber.output.directory == FALSE) & (file.exists(out_dir))) {
overwrite <- try( winDialog.nonint(type="yesno", "Output directory already exists. Overwrite?"), silent=TRUE)
if(overwrite == "NO") {
shell(paste(explorer_file, out_dir, sep=" "), wait=FALSE)
q(save="no")
}
}
interval_list_dir <-arguments[1]
}
} else if(length(arguments) == 3) {
#Uses provided command line arguments
lane_dir <- arguments[1]
out_dir <- arguments[2]
viscap.cfg <- arguments[3]
batch <- basename(out_dir)
} else {
#Usage statement
try( winDialog.nonint(type="ok", "Usage: VisCap.R lane_directory output_directory interval_lists_directory"), silent=TRUE)
q(save="no")
}
######
#Main#
######
# Read coverage tables
mat.all <- make_matrix_from_cov_files(lane_dir, cov_file_pattern, cov_field)
mat.all[which(mat.all==0)]=0.00001
# Read interval name files
interval_lookup <- load_interval_names(interval_list_dir, interval_file_pattern)
# Sort matrix by genome coordinates found in rownames
if(length(interval_lookup$chr[grep("chr",interval_lookup$chr)])!=0){chroms <- c(paste("chr",1:22,sep=""),"chrX","chrY", "chrMT", "chrM")}else{chroms <- c(1:22,"X","Y", "MT", "M")}
chroms <- factor(chroms, levels=chroms, labels=chroms, ordered=TRUE)
coords <- matrix(unlist(strsplit(rownames(mat.all), ":|-")), ncol=3, byrow=TRUE, dimnames=list(rownames(mat.all)))
coords <- coords[order(match(coords[,1], chroms), as.numeric(coords[,2]), as.numeric(coords[,3])),]
mat <- mat.all[rownames(coords),]
#Iteratively run VisCap algorithm, removing bad samples after each run
if(iterative.calling.limit == 0) {
iterative.calling.limit <- dim(mat)[2]
}
for(iteration in 1:iterative.calling.limit) {
if(iterative.calling.limit == 1) {
out_dir.iteration <- out_dir
} else {
out_dir.iteration <- paste(out_dir, "/", batch, "_run", iteration, sep="")
}
dir.create(out_dir.iteration, showWarnings = FALSE, recursive=TRUE)
# Normalize exon coverage by exon
nmat_badX <- log2(divide_by_batch_median(mat))
nmat <- rescale_chrX(nmat_badX, ylimits, iqr_multiplier, out_dir.iteration)
# Call cnvs then plot heatmaps by chromosome and per-sample exon coverage
heatmap_by_chrom(nmat, "QC_cnv_heatmap", ylimits, out_dir.iteration)
cnv_bplot_and_calls <- call_cnvs(nmat, ylimits, interval_lookup, threshold.min_exons, iqr_multiplier, threshold.cnv_log2_cutoffs, out_dir.iteration)
exon_plot_per_sample(nmat, ylimits, interval_lookup, cnv_bplot_and_calls, out_dir.iteration)
# Write out matrix of log2 ratios to file
outfile <- paste(out_dir.iteration, "/", "log2_ratio_table", ".xls", sep="")
gene_exon <- annotate_interval_names(rownames(nmat), interval_lookup)
nmat.with.gene_exon <- cbind(gene_exon, nmat)
write.table(nmat.with.gene_exon, outfile, , quote = FALSE, sep = "\t", col.names = NA)
#Write out VisCap run information
run_info_table <- matrix(ncol = 2, byrow=TRUE, data = c(
"Date", date(),
"VisCap command", paste(commandArgs(), collapse=" "),
"Subversion revision information", svn.revision,
"Batch directory", lane_dir,
"Coverage file pattern", cov_file_pattern,
"Field within coverage file", cov_field,
"Output directory", out_dir.iteration,
"Interval name lookup files", interval_list_dir,
"Interval name lookup file pattern", interval_file_pattern,
"Exons used for CNV detection", dim(nmat)[1],
"Samples used for CNV detection", dim(nmat)[2],
"Samples not used for CNV detection", paste(c(colnames(mat.all)[!(colnames(mat.all) %in% colnames(nmat))], ""), sep=","),
"Plot y-axis limits", paste(ylimits, collapse=","),
"Minimum consecutive exons to call CNV", threshold.min_exons,
"IQR multiplier used for boxplots", iqr_multiplier,
"Static log2 ratio thresholds to call CNVs", paste(threshold.cnv_log2_cutoffs, collapse=","),
"Iteration", iteration
))
run_info_outfile <- paste(out_dir.iteration, "/", "VisCap_run_info", ".xls", sep="")
write.table(run_info_table, run_info_outfile, quote = FALSE, sep = "\t", col.names = FALSE, row.names = FALSE)
save.image(file=paste(out_dir.iteration, "/", "session", ".Rdata", sep=""))
#Remove failed samples from matrix for next run
passes <- cnv_bplot_and_calls[[1]]$names[cnv_bplot_and_calls[[1]]$qc == "PASS"]
if(length(passes) == dim(mat)[2]) {
break
} else {
#Restrict mat only to samples that pass boxplot qc
mat <- mat[,passes]
}
}
# Open output directory and quit R
if((dev_dir == FALSE) && (length(arguments) == 0)) {
shell(paste(explorer_file, out_dir, sep=" "), wait=FALSE)
}
quit(save="no")