forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathleaky_bias.h
292 lines (219 loc) · 9.99 KB
/
leaky_bias.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cuda_fp16.h>
template <typename T>
__device__
T add(T const & a, T const &b){
return (a + b);
}
template <>
__device__
half2 add(half2 const & a, half2 const &b){
return (__hadd2(a,b));
}
template <typename T>
struct RELU{
__device__
T operator()(T const & a){
return a > T(0) ? a : T(0);
}
__device__
half2 operator()(half2 const & a){
float2 a_fp32x2 = __half22float2(a);
a_fp32x2.x = a_fp32x2.x > 0.f ? a_fp32x2.x : 0.f;
a_fp32x2.y = a_fp32x2.y > 0.f ? a_fp32x2.y : 0.f;
if(a_fp32x2.x < 0.f || a_fp32x2.y < 0.f)
printf(" %f %f\n", a_fp32x2.x ,a_fp32x2.y);
return __float22half2_rn(a_fp32x2);
}
};
template <typename T>
struct LEAKY_RELU{
__device__
T operator()(T const & a, T const & scale = half(1)){
return a > T(0) ? a : scale * a;
}
__device__
half2 operator()(half2 const & a, half const & scale = half(1)){
half2 zero = __half2half2(half(0));
half2 gt_zero = __hge2(a, zero);
half2 le_zero = __hle2(a, zero);
half2 scale_f16x2 = __half2half2(scale);
half2 mask_scale_f16x2 = __hfma2(le_zero, scale_f16x2, gt_zero);
return __hmul2(a, mask_scale_f16x2);
}
};
template <int N, int BLOCKDIM>
__global__ void leaky_and_activation(half* inout, half* bias, half scale, bool mat_bias){
constexpr bool N_MOD_2 = N & 1 ? false : true;
using Access_tp = typename std::conditional<N_MOD_2, half2, half>::type;
constexpr int Access_elements = sizeof(Access_tp) / sizeof(half);
constexpr int iter = (N + (BLOCKDIM * Access_elements) - 1 ) / (BLOCKDIM * Access_elements);
LEAKY_RELU<half> Act;
Access_tp src_v[iter];
Access_tp bias_v[iter];
int batch_id = blockIdx.y;
int batch_offset = batch_id * gridDim.x * N;
for(int i = 0; i < iter; i++){
int idx = (i * BLOCKDIM + threadIdx.x) * Access_elements;
if (idx < N){
src_v[i] = *reinterpret_cast<Access_tp*>(inout + blockIdx.x * N + idx + batch_offset);
if (mat_bias)
bias_v[i] = *reinterpret_cast<Access_tp*>(bias + blockIdx.x * N + idx + batch_offset);
else
bias_v[i] = *reinterpret_cast<Access_tp*>(bias + idx + batch_id * N);
*reinterpret_cast<Access_tp*>(inout + blockIdx.x * N + idx + batch_offset) = Act(add(src_v[i],bias_v[i]),scale);
}
}
}
template <int N, int BLOCKDIM>
__global__ void leaky_and_activation(half* inout, half scale){
constexpr bool N_MOD_2 = N & 1 ? false : true;
using Access_tp = typename std::conditional<N_MOD_2, half2, half>::type;
constexpr int Access_elements = sizeof(Access_tp) / sizeof(half);
constexpr int iter = (N + (BLOCKDIM * Access_elements) - 1 ) / (BLOCKDIM * Access_elements);
int batch_id = blockIdx.y;
int batch_offset = batch_id * gridDim.x * N;
LEAKY_RELU<half> Act;
Access_tp src_v[iter];
for(int i = 0; i < iter; i++){
int idx = (i * BLOCKDIM + threadIdx.x) * Access_elements;
if (idx < N){
src_v[i] = *reinterpret_cast<Access_tp*>(inout + blockIdx.x * N + idx + batch_offset);
*reinterpret_cast<Access_tp*>(inout + blockIdx.x * N + idx + batch_offset) = Act(src_v[i], scale);
}
}
}
template <int N, int BLOCKDIM>
void leaky_and_activation(half* inout, half* bias, int m, int b, half scale, bool mat_bias){
dim3 grid(m, b);
if (bias == nullptr)
leaky_and_activation<N, BLOCKDIM><<<grid , BLOCKDIM>>>(inout, scale);
else
leaky_and_activation<N, BLOCKDIM><<<grid , BLOCKDIM>>>(inout, bias, scale, mat_bias);
}
template <int N, int BLOCKDIM>
__global__ void relu_and_activation(half* inout, half* bias, bool mat_bias){
constexpr bool N_MOD_2 = N & 1 ? false : true;
using Access_tp = typename std::conditional<N_MOD_2, half2, half>::type;
constexpr int Access_elements = sizeof(Access_tp) / sizeof(half);
constexpr int iter = (N + (BLOCKDIM * Access_elements) - 1 ) / (BLOCKDIM * Access_elements);
RELU<half> Act;
Access_tp src_v[iter];
Access_tp bias_v[iter];
int batch_id = blockIdx.y;
int batch_offset = batch_id * gridDim.x * N;
for(int i = 0; i < iter; i++){
int idx = (i * BLOCKDIM + threadIdx.x) * Access_elements;
if (idx < N){
src_v[i] = *reinterpret_cast<Access_tp*>(inout + blockIdx.x * N + idx + batch_offset);
if (mat_bias)
bias_v[i] = *reinterpret_cast<Access_tp*>(bias + blockIdx.x * N + idx + batch_offset);
else
bias_v[i] = *reinterpret_cast<Access_tp*>(bias + idx + batch_id * N);
*reinterpret_cast<Access_tp*>(inout + blockIdx.x * N + idx + batch_offset) = Act(add(src_v[i],bias_v[i]));
}
}
}
template <int N, int BLOCKDIM>
__global__ void relu_and_activation(half* inout){
constexpr bool N_MOD_2 = N & 1 ? false : true;
using Access_tp = typename std::conditional<N_MOD_2, half2, half>::type;
constexpr int Access_elements = sizeof(Access_tp) / sizeof(half);
constexpr int iter = (N + (BLOCKDIM * Access_elements) - 1 ) / (BLOCKDIM * Access_elements);
int batch_id = blockIdx.y;
int batch_offset = batch_id * gridDim.x * N;
RELU<half> Act;
Access_tp src_v[iter];
for(int i = 0; i < iter; i++){
int idx = (i * BLOCKDIM + threadIdx.x) * Access_elements;
if (idx < N){
src_v[i] = *reinterpret_cast<Access_tp*>(inout + blockIdx.x * N + idx + batch_offset);
*reinterpret_cast<Access_tp*>(inout + blockIdx.x * N + idx + batch_offset) = Act(src_v[i]);
}
}
}
template <int N, int BLOCKDIM>
void relu_and_activation(half* inout, half* bias, int m, int b, bool mat_bias){
dim3 grid(m, b);
if (bias == nullptr)
relu_and_activation<N, BLOCKDIM><<<grid , BLOCKDIM>>>(inout);
else
relu_and_activation<N, BLOCKDIM><<<grid , BLOCKDIM>>>(inout, bias, mat_bias);
}
template <int N, int BLOCKDIM>
__global__ void identity_and_activation(half* inout, half* bias, bool mat_bias){
constexpr bool N_MOD_2 = N & 1 ? false : true;
using Access_tp = typename std::conditional<N_MOD_2, half2, half>::type;
constexpr int Access_elements = sizeof(Access_tp) / sizeof(half);
constexpr int iter = (N + (BLOCKDIM * Access_elements) - 1 ) / (BLOCKDIM * Access_elements);
int batch_id = blockIdx.y;
int batch_offset = batch_id * gridDim.x * N;
Access_tp src_v[iter];
Access_tp bias_v[iter];
for(int i = 0; i < iter; i++){
int idx = (i * BLOCKDIM + threadIdx.x) * Access_elements;
if (idx < N){
src_v[i] = *reinterpret_cast<Access_tp*>(inout + blockIdx.x * N + idx + batch_offset);
if (mat_bias)
bias_v[i] = *reinterpret_cast<Access_tp*>(bias + blockIdx.x * N + idx + batch_offset);
else
bias_v[i] = *reinterpret_cast<Access_tp*>(bias + idx + batch_id * N);
*reinterpret_cast<Access_tp*>(inout + blockIdx.x * N + idx + batch_offset) = (add(src_v[i],bias_v[i]));
}
}
}
template <int N, int BLOCKDIM>
__global__ void identity_and_activation(half* inout){
constexpr bool N_MOD_2 = N & 1 ? false : true;
using Access_tp = typename std::conditional<N_MOD_2, half2, half>::type;
constexpr int Access_elements = sizeof(Access_tp) / sizeof(half);
constexpr int iter = (N + (BLOCKDIM * Access_elements) - 1 ) / (BLOCKDIM * Access_elements);
int batch_id = blockIdx.y;
int batch_offset = batch_id * gridDim.x * N;
Access_tp src_v[iter];
for(int i = 0; i < iter; i++){
int idx = (i * BLOCKDIM + threadIdx.x) * Access_elements;
if (idx < N){
src_v[i] = *reinterpret_cast<Access_tp*>(inout + blockIdx.x * N + idx + batch_offset);
*reinterpret_cast<Access_tp*>(inout + blockIdx.x * N + idx + batch_offset) = (src_v[i]);
}
}
}
template <int N, int BLOCKDIM>
void identity_and_activation(half* inout, half* bias, int m, int b, bool mat_bias){
dim3 grid(m, b);
if (bias == nullptr)
identity_and_activation<N, BLOCKDIM><<<grid , BLOCKDIM>>>(inout);
else
identity_and_activation<N, BLOCKDIM><<<grid , BLOCKDIM>>>(inout, bias, mat_bias);
}