forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathswizzle.hpp
467 lines (410 loc) · 15 KB
/
swizzle.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp>
#include <cute/container/tuple.hpp>
#include <cute/algorithm/tuple_algorithms.hpp>
#include <cute/numeric/integer_sequence.hpp>
#include <cute/numeric/integral_constant.hpp>
#include <cute/numeric/math.hpp>
namespace cute
{
// A generic Swizzle functor
/* 0bxxxxxxxxxxxxxxxYYYxxxxxxxZZZxxxx
* ^--^ MBase is the number of least-sig bits to keep constant
* ^-^ ^-^ BBits is the number of bits in the mask
* ^---------^ SShift is the distance to shift the YYY mask
* (pos shifts YYY to the right, neg shifts YYY to the left)
*
* e.g. Given
* 0bxxxxxxxxxxxxxxxxYYxxxxxxxxxZZxxx
* the result is
* 0bxxxxxxxxxxxxxxxxYYxxxxxxxxxAAxxx where AA = ZZ xor YY
*/
template <int BBits, int MBase, int SShift = BBits>
struct Swizzle
{
static constexpr int num_bits = BBits;
static constexpr int num_base = MBase;
static constexpr int num_shft = SShift;
static_assert(num_base >= 0, "MBase must be positive.");
static_assert(num_bits >= 0, "BBits must be positive.");
static_assert(abs(num_shft) >= num_bits, "abs(SShift) must be more than BBits.");
// using 'int' type here to avoid unintentially casting to unsigned... unsure.
using bit_msk = cute::constant<int, (1 << num_bits) - 1>;
using yyy_msk = cute::constant<int, bit_msk{} << (num_base + max(0,num_shft))>;
using zzz_msk = cute::constant<int, bit_msk{} << (num_base - min(0,num_shft))>;
using msk_sft = cute::constant<int, num_shft>;
static constexpr uint32_t swizzle_code = uint32_t(yyy_msk{} | zzz_msk{});
template <class Offset>
CUTE_HOST_DEVICE constexpr static
auto
apply(Offset const& offset)
{
return offset ^ shiftr(offset & yyy_msk{}, msk_sft{}); // ZZZ ^= YYY
}
template <class Offset>
CUTE_HOST_DEVICE constexpr
auto
operator()(Offset const& offset) const
{
return apply(offset);
}
};
//
// make_swizzle<0b1000, 0b0100>() -> Swizzle<1,2,1>
// make_swizzle<0b11000000, 0b00000110>() -> Swizzle<2,1,5>
//
template <uint32_t Y, uint32_t Z>
CUTE_HOST_DEVICE constexpr
auto
make_swizzle()
{
constexpr uint32_t BZ = popcount(Y); // Number of swizzle bits
constexpr uint32_t BY = popcount(Z); // Number of swizzle bits
static_assert(BZ == BY, "Number of bits in Y and Z don't match");
constexpr uint32_t TZ_Y = countr_zero(Y); // Number of trailing zeros in Y
constexpr uint32_t TZ_Z = countr_zero(Z); // Number of trailing zeros in Z
constexpr uint32_t M = cute::min(TZ_Y, TZ_Z) % 32;
constexpr int32_t S = int32_t(TZ_Y) - int32_t(TZ_Z); // Difference in trailing zeros
static_assert((Y | Z) == Swizzle<BZ,M,S>::swizzle_code, "Something went wrong.");
return Swizzle<BZ,M,S>{};
}
template <int B0, int M0, int S0,
int B1, int M1, int S1>
CUTE_HOST_DEVICE constexpr
auto
composition(Swizzle<B0,M0,S0>, Swizzle<B1,M1,S1>)
{
static_assert(S0 == S1, "Can only merge swizzles of the same shift.");
constexpr uint32_t Y = Swizzle<B0,M0,S0>::yyy_msk::value ^ Swizzle<B1,M1,S1>::yyy_msk::value;
constexpr uint32_t Z = Swizzle<B0,M0,S0>::zzz_msk::value ^ Swizzle<B1,M1,S1>::zzz_msk::value;
return make_swizzle<Y,Z>();
//return ComposedFn<Swizzle<B0,M0,S0>, Swizzle<B1,M1,S1>>{};
}
//
// Utility for slicing and swizzle "offsets"
//
// For swizzle functions, it is often needed to keep track of which bits are
// consumed and which bits are free. Furthermore, it is useful to know whether
// each of these bits is known statically or dynamically.
// MixedBits is an 32-bit unsigned integer class where some bits are known statically
// and some bits are known dynamically. These sets of bits are disjoint and it is
// known statically which bits are known dynamically.
// MixedBits can only be manipulated through bitwise operations
// Abstract value: StaticInt | (dynamic_int_ & StaticFlags)
template <uint32_t StaticInt,
uint32_t StaticFlags> // 0: static, 1: dynamic
struct MixedBits
{
// Representation invariants
static_assert(StaticFlags != 0, "Should be at least one dynamic bit in MixedBits.");
static_assert((StaticInt & StaticFlags) == 0, "No static/dynamic overlap allowed in MixedBits.");
uint32_t dynamic_int_;
// assert((dynamic_int_ & ~StaticFlags) == 0);
CUTE_HOST_DEVICE constexpr operator uint32_t() const noexcept { return StaticInt | dynamic_int_; }
};
// Return a value representing (C<s>{} | (d & C<f>)) potentially using MixedBits to track s and f.
// This maker does allow ((s & f) != 0) and enforces the MixedBits invariant before creation.
template <auto s, class DynamicType, auto f>
CUTE_HOST_DEVICE constexpr
auto
make_mixed_bits(C<s>, DynamicType const& d, C<f>)
{
static_assert(is_integral<DynamicType>::value);
constexpr uint32_t new_f = uint32_t(f) & ~uint32_t(s); // StaticBits take precedence, M<0,f>{d} | C<s>{}
if constexpr (new_f == 0 || is_static<DynamicType>::value) {
return C<s>{} | (d & C<new_f>{}); // Just return a static int
} else {
return MixedBits<s, new_f>{uint32_t(d) & new_f}; // MixedBits
}
CUTE_GCC_UNREACHABLE;
}
//
// Operators
//
// Equality
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator==(MixedBits<S0,F0> const& m, C<S1>)
{
return (S0 == (uint32_t(S1) & ~F0)) && (m.dynamic_int_ == (uint32_t(S1) & F0));
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator==(C<S1> s, MixedBits<S0,F0> const& m)
{
return m == s;
}
// Bitwise AND
template <uint32_t S0, uint32_t F0,
uint32_t S1, uint32_t F1>
CUTE_HOST_DEVICE constexpr
auto
operator&(MixedBits<S0,F0> const& m0, MixedBits<S1,F1> const& m1)
{
// Truth table for (S0,D0,F0) & (S1,D1,F1) -> (S,D,F)
// S0D0F0 | 0X0 | 001 | 011 | 1X0 |
// S1D1F1
// 0X0 | 0X0 | 0X0 | 0X0 | 0X0 |
// 001 | 0X0 | 001 | 001 | 001 |
// 011 | 0X0 | 001 | 011 | 011 |
// 1X0 | 0X0 | 001 | 011 | 1X0 |
return make_mixed_bits(C<S0 & S1>{},
//(S0 | m0.dynamic_int_) & (S1 | m1.dynamic_int_),
((S1 & F0) & m0.dynamic_int_) | ((S0 & F1) & m1.dynamic_int_) | (m0.dynamic_int_ & m1.dynamic_int_),
C<(S1 & F0) | (S0 & F1) | (F0 & F1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator&(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<S0 & uint32_t(S1)>{},
m.dynamic_int_,
C<F0 & uint32_t(S1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator&(C<S1> s, MixedBits<S0,F0> const& m)
{
return m & s;
}
// Bitwise OR
template <uint32_t S0, uint32_t F0,
uint32_t S1, uint32_t F1>
CUTE_HOST_DEVICE constexpr
auto
operator|(MixedBits<S0,F0> const& m0, MixedBits<S1,F1> const& m1)
{
// Truth table for (S0,D0,F0) | (S1,D1,F1) -> (S,D,F)
// S0D0F0 | 0X0 | 001 | 011 | 1X0 |
// S1D1F1
// 0X0 | 0X0 | 001 | 011 | 1X0 |
// 001 | 001 | 001 | 011 | 1X0 |
// 011 | 011 | 011 | 011 | 1X0 |
// 1X0 | 1X0 | 1X0 | 1X0 | 1X0 |
return make_mixed_bits(C<S0 | S1>{},
((~S1 & F0) & m0.dynamic_int_) | ((~S0 & F1) & m1.dynamic_int_),
C<(~S0 & F1) | (~S1 & F0)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator|(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<S0 | uint32_t(S1)>{},
m.dynamic_int_,
C<F0 & ~uint32_t(S1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator|(C<S1> s, MixedBits<S0,F0> const& m)
{
return m | s;
}
// Bitwise XOR
template <uint32_t S0, uint32_t F0,
uint32_t S1, uint32_t F1>
CUTE_HOST_DEVICE constexpr
auto
operator^(MixedBits<S0,F0> const& m0, MixedBits<S1,F1> const& m1)
{
// Truth table for (S0,D0,F0) ^ (S1,D1,F1) -> (S,D,F)
// S0D0F0 | 0X0 | 001 | 011 | 1X0 |
// S1D1F1
// 0X0 | 0X0 | 001 | 011 | 1X0 |
// 001 | 001 | 001 | 011 | 011 |
// 011 | 011 | 011 | 001 | 001 |
// 1X0 | 1X0 | 011 | 001 | 0X0 |
return make_mixed_bits(C<(~S0 & S1 & ~F0) | (S0 & ~S1 & ~F1)>{},
(S0 | m0.dynamic_int_) ^ (S1 | m1.dynamic_int_),
C<F0 | F1>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator^(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<(~S0 & uint32_t(S1) & ~F0) | (S0 & ~uint32_t(S1))>{},
(S0 | m.dynamic_int_) ^ uint32_t(S1),
C<F0>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator^(C<S1> s, MixedBits<S0,F0> const& m)
{
return m ^ s;
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator<<(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<(S0 << S1)>{},
m.dynamic_int_ << S1,
C<(F0 << S1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator>>(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<(S0 >> S1)>{},
m.dynamic_int_ >> S1,
C<(F0 >> S1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
shiftl(MixedBits<S0,F0> const& m, C<S1> s)
{
if constexpr (S1 >= 0) {
return m << s;
} else {
return m >> -s;
}
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
shiftr(MixedBits<S0,F0> const& m, C<S1> s)
{
if constexpr (S1 >= 0) {
return m >> s;
} else {
return m << -s;
}
}
//
// upcast and downcast
//
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
safe_div(MixedBits<S0,F0> const& m, C<S1> s)
{
static_assert(has_single_bit(uint32_t(S1)), "Only divide MixedBits by powers of two.");
return make_mixed_bits(safe_div(C<S0>{}, s),
safe_div(m.dynamic_int_, s),
safe_div(C<F0>{}, s));
}
template <uint32_t N, uint32_t S0, uint32_t F0>
CUTE_HOST_DEVICE constexpr
auto
upcast(MixedBits<S0,F0> const& m)
{
static_assert(has_single_bit(N), "Only divide MixedBits by powers of two.");
return safe_div(m, C<N>{});
}
template <uint32_t N, class T, __CUTE_REQUIRES(cute::is_integral<T>::value)>
CUTE_HOST_DEVICE constexpr
auto
upcast(T const& m)
{
return safe_div(m, C<N>{});
}
template <uint32_t N, uint32_t S0, uint32_t F0>
CUTE_HOST_DEVICE constexpr
auto
downcast(MixedBits<S0,F0> const& m)
{
static_assert(has_single_bit(N), "Only scale MixedBits by powers of two.");
return make_mixed_bits(C<S0 * N>{},
m.dynamic_int_ * N,
C<F0 * N>{});
}
template <uint32_t N, class T, __CUTE_REQUIRES(cute::is_integral<T>::value)>
CUTE_HOST_DEVICE constexpr
auto
downcast(T const& m)
{
return m * C<N>{};
}
//
// Convert a Pow2Layout+Coord to a MixedBits
//
template <class Shape, class Stride, class Coord>
CUTE_HOST_DEVICE constexpr
auto
to_mixed_bits(Shape const& shape, Stride const& stride, Coord const& coord)
{
if constexpr (is_tuple<Shape>::value && is_tuple<Stride>::value && is_tuple<Coord>::value) {
static_assert(tuple_size<Shape>::value == tuple_size<Stride>::value, "Mismatched ranks");
static_assert(tuple_size<Shape>::value == tuple_size<Coord >::value, "Mismatched ranks");
return transform_apply(shape, stride, coord, [](auto const& s, auto const& d, auto const& c) { return to_mixed_bits(s,d,c); },
[](auto const&... a) { return (a ^ ...); });
} else if constexpr (is_integral<Shape>::value && is_integral<Stride>::value && is_integral<Coord>::value) {
static_assert(decltype(shape*stride)::value == 0 || has_single_bit(decltype(shape*stride)::value), "Requires pow2 shape*stride.");
return make_mixed_bits(Int<0>{}, coord * stride, (shape - Int<1>{}) * stride);
} else {
static_assert(is_integral<Shape>::value && is_integral<Stride>::value && is_integral<Coord>::value, "Either Shape, Stride, and Coord must be all tuples, or they must be all integral (in the sense of cute::is_integral).");
}
CUTE_GCC_UNREACHABLE;
}
template <class Layout, class Coord>
CUTE_HOST_DEVICE constexpr
auto
to_mixed_bits(Layout const& layout, Coord const& coord)
{
return to_mixed_bits(layout.shape(), layout.stride(), idx2crd(coord, layout.shape()));
}
//
// Display utilities
//
template <int B, int M, int S>
CUTE_HOST_DEVICE void print(Swizzle<B,M,S> const&)
{
printf("Sw<%d,%d,%d>", B, M, S);
}
template <uint32_t S, uint32_t F>
CUTE_HOST_DEVICE void print(MixedBits<S,F> const& m)
{
printf("M_%u|(%u&%u)=%u", S, m.dynamic_int_, F, uint32_t(m));
}
#if !defined(__CUDACC_RTC__)
template <int B, int M, int S>
CUTE_HOST std::ostream& operator<<(std::ostream& os, Swizzle<B,M,S> const&)
{
return os << "Sw<" << B << "," << M << "," << S << ">";
}
template <uint32_t S, class D, uint32_t F>
CUTE_HOST std::ostream& operator<<(std::ostream& os, MixedBits<S,F> const& m)
{
return os << "M_" << S << "|(" << m.dynamic_int_ << "&" << F << ")=" << uint32_t(m);
}
#endif // !defined(__CUDACC_RTC__)
} // end namespace cute