forked from yeyupiaoling/Whisper-Finetune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
76 lines (66 loc) · 3.62 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import argparse
import functools
import platform
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, AutoModelForCausalLM
from utils.utils import print_arguments, add_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg("audio_path", type=str, default="dataset/test.wav", help="预测的音频路径")
add_arg("model_path", type=str, default="models/whisper-tiny-finetune/", help="合并模型的路径,或者是huggingface上模型的名称")
add_arg("use_gpu", type=bool, default=True, help="是否使用gpu进行预测")
add_arg("language", type=str, default="chinese", help="设置语言,如果为None则预测的是多语言")
add_arg("num_beams", type=int, default=1, help="解码搜索大小")
add_arg("batch_size", type=int, default=16, help="预测batch_size大小")
add_arg("use_compile", type=bool, default=False, help="是否使用Pytorch2.0的编译器")
add_arg("task", type=str, default="transcribe", choices=['transcribe', 'translate'], help="模型的任务")
add_arg("assistant_model_path", type=str, default=None, help="助手模型,可以提高推理速度,例如openai/whisper-tiny")
add_arg("local_files_only", type=bool, default=True, help="是否只在本地加载模型,不尝试下载")
add_arg("use_flash_attention_2", type=bool, default=False, help="是否使用FlashAttention2加速")
add_arg("use_bettertransformer", type=bool, default=False, help="是否使用BetterTransformer加速")
args = parser.parse_args()
print_arguments(args)
# 设置设备
device = "cuda:0" if torch.cuda.is_available() and args.use_gpu else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() and args.use_gpu else torch.float32
# 获取Whisper的特征提取器、编码器和解码器
processor = AutoProcessor.from_pretrained(args.model_path)
# 获取模型
model = AutoModelForSpeechSeq2Seq.from_pretrained(
args.model_path, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True,
use_flash_attention_2=args.use_flash_attention_2
)
if args.use_bettertransformer and not args.use_flash_attention_2:
model = model.to_bettertransformer()
# 使用Pytorch2.0的编译器
if args.use_compile:
if torch.__version__ >= "2" and platform.system().lower() != 'windows':
model = torch.compile(model)
model.to(device)
# 获取助手模型
generate_kwargs_pipeline = None
if args.assistant_model_path is not None:
assistant_model = AutoModelForCausalLM.from_pretrained(
args.assistant_model_path, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
assistant_model.to(device)
generate_kwargs_pipeline = {"assistant_model": assistant_model}
# 获取管道
infer_pipe = pipeline("automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=args.batch_size,
torch_dtype=torch_dtype,
generate_kwargs=generate_kwargs_pipeline,
device=device)
# 推理参数
generate_kwargs = {"task": args.task, "num_beams": args.num_beams}
if args.language is not None:
generate_kwargs["language"] = args.language
# 推理
result = infer_pipe(args.audio_path, return_timestamps=True, generate_kwargs=generate_kwargs)
for chunk in result["chunks"]:
print(f"[{chunk['timestamp'][0]}-{chunk['timestamp'][1]}s] {chunk['text']}")