-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtripy.py
144 lines (114 loc) · 4.77 KB
/
tripy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import math
import sys
from collections import namedtuple
Point = namedtuple('Point', ['x', 'y'])
EPSILON = math.sqrt(sys.float_info.epsilon)
def earclip(polygon):
"""
Simple earclipping algorithm for a given polygon p.
polygon is expected to be an array of 2-tuples of the cartesian points of the polygon
For a polygon with n points it will return n-2 triangles.
The triangles are returned as an array of 3-tuples where each item in the tuple is a 2-tuple of the cartesian point.
e.g
>>> polygon = [(0,1), (-1, 0), (0, -1), (1, 0)]
>>> triangles = tripy.earclip(polygon)
>>> triangles
[((1, 0), (0, 1), (-1, 0)), ((1, 0), (-1, 0), (0, -1))]
Implementation Reference:
- https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
"""
ear_vertex = []
triangles = []
polygon = [Point(*point) for point in polygon]
if _is_clockwise(polygon):
polygon.reverse()
point_count = len(polygon)
for i in range(point_count):
prev_index = i - 1
prev_point = polygon[prev_index]
point = polygon[i]
next_index = (i + 1) % point_count
next_point = polygon[next_index]
if _is_ear(prev_point, point, next_point, polygon):
ear_vertex.append(point)
while ear_vertex and point_count >= 3:
ear = ear_vertex.pop(0)
i = polygon.index(ear)
prev_index = i - 1
prev_point = polygon[prev_index]
next_index = (i + 1) % point_count
next_point = polygon[next_index]
polygon.remove(ear)
point_count -= 1
triangles.append(((prev_point.x, prev_point.y), (ear.x, ear.y), (next_point.x, next_point.y)))
if point_count > 3:
prev_prev_point = polygon[prev_index - 1]
next_next_index = (i + 1) % point_count
next_next_point = polygon[next_next_index]
groups = [
(prev_prev_point, prev_point, next_point, polygon),
(prev_point, next_point, next_next_point, polygon),
]
for group in groups:
p = group[1]
if _is_ear(*group):
if p not in ear_vertex:
ear_vertex.append(p)
elif p in ear_vertex:
ear_vertex.remove(p)
return triangles
def _is_clockwise(polygon):
s = 0
polygon_count = len(polygon)
for i in range(polygon_count):
point = polygon[i]
point2 = polygon[(i + 1) % polygon_count]
s += (point2.x - point.x) * (point2.y + point.y)
return s > 0
def _is_convex(prev, point, next):
return _triangle_sum(prev.x, prev.y, point.x, point.y, next.x, next.y) < 0
def _is_ear(p1, p2, p3, polygon):
ear = _contains_no_points(p1, p2, p3, polygon) and \
_is_convex(p1, p2, p3) and \
_triangle_area(p1.x, p1.y, p2.x, p2.y, p3.x, p3.y) > 0
return ear
def _contains_no_points(p1, p2, p3, polygon):
for pn in polygon:
if pn in (p1, p2, p3):
continue
elif _is_point_inside(pn, p1, p2, p3):
return False
return True
def _is_point_inside(p, a, b, c):
area = _triangle_area(a.x, a.y, b.x, b.y, c.x, c.y)
area1 = _triangle_area(p.x, p.y, b.x, b.y, c.x, c.y)
area2 = _triangle_area(p.x, p.y, a.x, a.y, c.x, c.y)
area3 = _triangle_area(p.x, p.y, a.x, a.y, b.x, b.y)
areadiff = abs(area - sum([area1, area2, area3])) < EPSILON
return areadiff
def _triangle_area(x1, y1, x2, y2, x3, y3):
return abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2.0)
def _triangle_sum(x1, y1, x2, y2, x3, y3):
return x1 * (y3 - y2) + x2 * (y1 - y3) + x3 * (y2 - y1)
def calculate_total_area(triangles):
result = []
for triangle in triangles:
sides = []
for i in range(3):
next_index = (i + 1) % 3
pt = triangle[i]
pt2 = triangle[next_index]
# Distance between two points
side = math.sqrt(math.pow(pt2[0] - pt[0], 2) + math.pow(pt2[1] - pt[1], 2))
sides.append(side)
# Heron's numerically stable forumla for area of a triangle:
# https://en.wikipedia.org/wiki/Heron%27s_formula
# However, for line-like triangles of zero area this formula can produce an infinitesimally negative value
# as an input to sqrt() due to the cumulative arithmetic errors inherent to floating point calculations:
# https://people.eecs.berkeley.edu/~wkahan/Triangle.pdf
# For this purpose, abs() is used as a reasonable guard against this condition.
c, b, a = sorted(sides)
area = .25 * math.sqrt(abs((a + (b + c)) * (c - (a - b)) * (c + (a - b)) * (a + (b - c))))
result.append((area, a, b, c))
triangle_area = sum(tri[0] for tri in result)
return triangle_area