-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathgraph.py
232 lines (208 loc) · 7.75 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import collections
import itertools
import heapq
import math
class Graph:
def __init__(self, V, E, directed=True):
self.V = V
self.E = E
if directed == False:
for u in self.V:
for v in self.V - set(self.E[u]):
self.E[u][v] = float('inf') * (u != v)
for u, v in itertools.permutations(self.V, 2):
self.E[u][v] = self.E[v][u] = min(self.E[u][v], self.E[v][u])
def count_components(self):
V = collections.OrderedDict({u: None for u in self.V})
counter = 0
while V:
stack = [V.popitem()[0]]
while stack:
u = stack.pop()
for v in self.E[u]:
if self.E[u][v] < float('inf') and v in V:
stack += [v]
del V[v]
counter += 1
return counter
def dijkstra(self, source, trace=False):
dist = {u: float('inf') for u in self.V}
dist[source] = 0
Q = [(d, u) for u, d in dist.items()]
heapq.heapify(Q)
if trace:
paths = {u: [[u]] for u in self.V}
while Q:
d, u = heapq.heappop(Q)
for v, weight in self.E[u].items():
alt = d + weight
if alt <= dist[v]:
if alt < dist[v]:
dist[v] = alt
heapq.heappush(Q, (alt, v))
if trace:
paths[v] = [x for x in paths[v] if x[0] == source
] + [y + [v] for y in paths[u]]
if trace:
for u in paths:
paths[u] = [x for x in paths[u] if x[0] == source]
return paths if trace else dist
def bellman_ford(self, source):
dist = collections.defaultdict(lambda: float('inf'))
dist[source] = 0
predecessor = collections.defaultdict(None)
for w, u in itertools.product(self.V, self.E):
for v in self.E[u]:
if dist[u] + self.E[u][v] < dist[v]:
dist[v] = dist[u] + self.E[u][v]
predecessor[v] = u
return dist
def floyd_warshall(self):
dist = {u: {v: float('inf') for v in self.V} for u in self.V}
for u in self.V:
dist[u][u] = 0
for u in self.E:
for v in self.E[u]:
dist[u][v] = min(dist[u][v], self.E[u][v])
for w, u, v in itertools.permutations(self.V, 3):
dist[u][v] = min(dist[u][v], dist[u][w] + dist[w][v])
return dist
def bipartite(self):
color = {u: 0 for u in self.V}
for u in color:
if color[u] == 0:
color[u] = 1
stack = [u]
while stack:
u = stack.pop()
for v in self.E[u]:
if self.E[u][v] < float('inf'):
if color[v] == 0:
color[v] = -color[u]
stack += [v]
elif color[v] == color[u]:
return False
return True
def kruskal(self):
forest = [{u} for u in self.V]
enum = {list(u)[0]: i for i, u in enumerate(forest)}
MST = collections.defaultdict(dict)
for u, v, weight in sorted(
[(u, v, self.E[u][v]) for u in self.E for v in self.E[u]],
key = lambda x: x[2]
):
if enum[u] != enum[v]:
u, v = sorted([u, v], key = lambda x: len(forest[enum[x]]))
for w in list(forest[enum[u]]):
forest[enum[u]].discard(w)
forest[enum[v]].discard(w)
enum[w] = enum[v]
MST[u][v] = weight
return MST
def toposort(self):
E, F = collections.defaultdict(dict), collections.defaultdict(dict)
for u in self.E:
for v in self.E[u]:
if self.E[u][v] < float('inf'):
E[u][v] = F[v][u] = self.E[u][v]
order = []
stack = collections.OrderedDict({u: None for u in self.V - set(F)})
while stack:
u = stack.popitem()[0]
order += [u]
for v in list(E[u]):
del E[u][v]
del F[v][u]
if not F[v]:
stack[v] = None
if not any(E.values()):
return order
def prim(self):
MST = collections.defaultdict(dict)
visited = []
start_node = self.V.copy().pop()
MST[start_node] = 0
visited.append(start_node)
edges = [
(weight, dest) for dest, weight in self.E[start_node].items() if not math.isnan(weight) and not math.isinf(weight)
]
heapq.heapify(edges)
while len(visited) < len(self.V):
if (len(edges) == 0):
return {}
(weight, dest) = heapq.heappop(edges)
if dest not in visited:
visited.append(dest)
MST[dest] = weight
for u, d in self.E[dest].items():
if not math.isnan(d) and not math.isinf(d) and u not in visited:
heapq.heappush(edges, (d, u))
return MST
r3 = lambda k: range(k - 1, k + 2)
def get_neighbors(matrix, i, j, color=None, k=4):
if k == 4:
neighbors = {(i - 1, j), (i, j - 1), (i, j + 1), (i + 1, j)}
elif k == 8:
neighbors = set(itertools.product(r3(i), r3(j))) - {(i, j)}
for row, col in neighbors:
if not (0 <= row < len(matrix) and 0 <= col < len(matrix[0])) or (
color != None and matrix[row][col] != color
):
neighbors.remove((row, col))
return neighbors
def to_graph(matrix, color=1, k=4):
if matrix:
r = lambda x: range(len(x))
n, m = len(matrix), len(matrix[0])
V = {(i, j) for i, j in itertools.product(r(matrix), r(matrix[0]))
if matrix[i][j] == color}
E = collections.defaultdict(dict)
for i, j in V:
for row, col in get_neighbors(matrix, i, j, color=color, k=k):
E[(i, j)][(row, col)] = 1
return Graph(V, E)
return Graph(set(), collections.defaultdict(dict))
def flood_fill(matrix, i, j, color, k=4):
if 0 <= i < len(matrix) and 0 <= j < len(matrix[0]):
stack = [(i, j)]
visited = {(i, j)}
while stack:
i, j = stack.pop()
for v in get_neighbors(matrix, i, j, color=matrix[i][j], k=k):
if v not in visited:
stack += [v]
visited.add(v)
matrix[i][j] = color
def flood_fill_border(matrix, color, k=4):
if matrix:
n, m = len(matrix), len(matrix[0])
for i in range(n):
if matrix[i][0] != color:
flood_fill(matrix, i, 0, color, k)
j = m - 1
if matrix[i][j] != color:
flood_fill(matrix, i, j, color, k)
for j in range(1, j):
if matrix[0][j] != color:
flood_fill(matrix, 0, j, color, k)
i = n - 1
if matrix[i][j] != color:
flood_fill(matrix, i, j, color, k)
def word_ladder(start, end, bank, trace=False):
V = {start} | set(bank)
neighbors = collections.defaultdict(set)
for word in V:
for i in range(len(word)):
neighbors[word[:i] + '.' + word[i + 1:]].add(word)
E = collections.defaultdict(dict)
for wildcard in neighbors:
for u, v in itertools.permutations(neighbors[wildcard], 2):
if u != v:
E[u][v] = 1
dist = Graph(V, E).dijkstra(start, trace)
if end in dist:
return dist[end]
elif trace:
return []
else:
return float('inf')