forked from ClustProject/KUDataTransferlearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
109 lines (89 loc) · 4.56 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import pickle
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
def load_data(folderAddress, model_name):
if model_name in ["LSTM", "GRU", "CNN_1D", "LSTM_FCNs"]:
# raw time series data
train_x = pickle.load(open(folderAddress + 'x_train.pkl', 'rb'))
train_y = pickle.load(open(folderAddress + 'y_train.pkl', 'rb'))
test_x = pickle.load(open(folderAddress + 'x_test.pkl', 'rb'))
test_y = pickle.load(open(folderAddress + 'y_test.pkl', 'rb'))
print(train_x.shape)
print(train_y.shape)
print(test_x.shape)
print(test_y.shape)
print("inputSize(train_x.shape[1]):", train_x.shape[1]) # input size
print("sequenceLenth (train_x.shape[2]):", train_x.shape[2]) # seq_length
if model_name in["FC"]:
# representation data
train_x = pd.read_csv(folderAddress + 'ts2vec_repr_train.csv')
train_y = pickle.load(open(folderAddress + 'y_train.pkl', 'rb'))
test_x = pd.read_csv(folderAddress + 'ts2vec_repr_test.csv')
test_y = pickle.load(open(folderAddress + 'y_test.pkl', 'rb'))
return train_x, train_y, test_x, test_y
def get_train_val_data(train_data, valid_data, scaler_path):
# normalization
scaler = MinMaxScaler()
if len(train_data.shape) == 1: # shape=(time_steps, )
scaler = scaler.fit(np.expand_dims(train_data, axis=-1))
elif len(train_data.shape) < 3: # shape=(num_of_instance, input_dims)
scaler = scaler.fit(train_data)
else: # shape=(num_of_instance, input_dims, time_steps)
origin_shape = train_data.shape
scaler = scaler.fit(np.transpose(train_data, (0, 2, 1)).reshape(-1, origin_shape[1]))
scaled_data = []
for data in [train_data, valid_data]:
if len(train_data.shape) == 1: # shape=(time_steps, )
data = scaler.transform(np.expand_dims(data, axis=-1))
data = data.flatten()
elif len(data.shape) < 3: # shape=(num_of_instance, input_dims)
data = scaler.transform(data)
else: # shape=(num_of_instance, input_dims, time_steps)
data = scaler.transform(np.transpose(data, (0, 2, 1)).reshape(-1, origin_shape[1]))
data = np.transpose(data.reshape(-1, origin_shape[2], origin_shape[1]), (0, 2, 1))
scaled_data.append(data)
# save scaler
print(f"Save MinMaxScaler in path: {scaler_path}")
pickle.dump(scaler, open(scaler_path, 'wb'))
return scaled_data
def get_test_data(test_data, scaler_path):
# load scaler
scaler = pickle.load(open(scaler_path, 'rb'))
# normalization
if len(test_data.shape) == 1: # shape=(time_steps, )
scaled_test_data = scaler.transform(np.expand_dims(test_data, axis=-1))
scaled_test_data = scaled_test_data.flatten()
elif len(test_data.shape) < 3: # shape=(num_of_instance, input_dims)
scaled_test_data = scaler.transform(test_data)
else: # shape=(num_of_instance, input_dims, time_steps)
origin_shape = test_data.shape
scaled_test_data = scaler.transform(np.transpose(test_data, (0, 2, 1)).reshape(-1, origin_shape[1]))
scaled_test_data = np.transpose(scaled_test_data.reshape(-1, origin_shape[2], origin_shape[1]), (0, 2, 1))
return scaled_test_data, scaler
def get_plot(result_df):
# set number of subplots (2000개의 데이터를 한 subplot에 시각화)
num_fig = len(result_df) // 2000 + int(len(result_df) % 2000 != 0)
fig, ax = plt.subplots(num_fig, 1, figsize=(24, 6 * num_fig))
ax = [ax] if num_fig == 1 else ax
for i in range(num_fig):
# set true/predicted values for each subplot
true_data = result_df.iloc[i*2000:(i+1)*2000].loc[:, 'actual_value']
pred_data = result_df.iloc[i*2000:(i+1)*2000].loc[:, 'predicted_value']
# plot true/predicted values
ax[i].plot(true_data.index, true_data.values, alpha=0.5, label='Actual')
ax[i].plot(pred_data.index, pred_data.values, alpha=0.5, label='Predicted')
# set range of x and y axis
min_x = i * 2000 if num_fig > 1 else 0
max_x = (i + 1) * 2000 if num_fig > 1 else len(result_df)
min_y = min(result_df['actual_value'].min(), result_df['predicted_value'].min())
max_y = max(result_df['actual_value'].max(), result_df['predicted_value'].max())
ax[i].set_xlim(min_x, max_x)
ax[i].set_ylim(min_y, max_y)
ax[i].set_xlabel('Index')
ax[i].set_ylabel('Value')
ax[i].legend()
plt.title('Actual Values vs. Predicted Values')
plt.show()