-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmath.lua
824 lines (702 loc) · 23.7 KB
/
math.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
-- $Id: math.lua,v 1.77 2016/06/23 15:17:20 roberto Exp roberto $
-- See Copyright Notice in file all.lua
print("testing numbers and math lib")
local minint = math.mininteger
local maxint = math.maxinteger
local intbits = math.floor(math.log(maxint, 2) + 0.5) + 1
assert((1 << intbits) == 0)
assert(minint == 1 << (intbits - 1))
assert(maxint == minint - 1)
-- number of bits in the mantissa of a floating-point number
local floatbits = 24
do
local p = 2.0^floatbits
while p < p + 1.0 do
p = p * 2.0
floatbits = floatbits + 1
end
end
local function isNaN (x)
return (x ~= x)
end
assert(isNaN(0/0))
assert(not isNaN(1/0))
do
local x = 2.0^floatbits
assert(x > x - 1.0 and x == x + 1.0)
print(string.format("%d-bit integers, %d-bit (mantissa) floats",
intbits, floatbits))
end
assert(math.type(0) == "integer" and math.type(0.0) == "float"
and math.type("10") == nil)
local function checkerror (msg, f, ...)
local s, err = pcall(f, ...)
assert(not s and string.find(err, msg))
end
local msgf2i = "number.* has no integer representation"
-- float equality
function eq (a,b,limit)
if not limit then
if floatbits >= 50 then limit = 1E-11
else limit = 1E-5
end
end
-- a == b needed for +inf/-inf
return a == b or math.abs(a-b) <= limit
end
-- equality with types
function eqT (a,b)
return a == b and math.type(a) == math.type(b)
end
-- basic float notation
assert(0e12 == 0 and .0 == 0 and 0. == 0 and .2e2 == 20 and 2.E-1 == 0.2)
do
local a,b,c = "2", " 3e0 ", " 10 "
assert(a+b == 5 and -b == -3 and b+"2" == 5 and "10"-c == 0)
assert(type(a) == 'string' and type(b) == 'string' and type(c) == 'string')
assert(a == "2" and b == " 3e0 " and c == " 10 " and -c == -" 10 ")
assert(c%a == 0 and a^b == 08)
a = 0
assert(a == -a and 0 == -0)
end
do
local x = -1
local mz = 0/x -- minus zero
t = {[0] = 10, 20, 30, 40, 50}
assert(t[mz] == t[0] and t[-0] == t[0])
end
do -- tests for 'modf'
local a,b = math.modf(3.5)
assert(a == 3.0 and b == 0.5)
a,b = math.modf(-2.5)
assert(a == -2.0 and b == -0.5)
a,b = math.modf(-3e23)
assert(a == -3e23 and b == 0.0)
a,b = math.modf(3e35)
assert(a == 3e35 and b == 0.0)
a,b = math.modf(-1/0) -- -inf
assert(a == -1/0 and b == 0.0)
a,b = math.modf(1/0) -- inf
assert(a == 1/0 and b == 0.0)
a,b = math.modf(0/0) -- NaN
assert(isNaN(a) and isNaN(b))
a,b = math.modf(3) -- integer argument
assert(eqT(a, 3) and eqT(b, 0.0))
a,b = math.modf(minint)
assert(eqT(a, minint) and eqT(b, 0.0))
end
assert(math.huge > 10e30)
assert(-math.huge < -10e30)
-- integer arithmetic
assert(minint < minint + 1)
assert(maxint - 1 < maxint)
assert(0 - minint == minint)
assert(minint * minint == 0)
assert(maxint * maxint * maxint == maxint)
-- testing floor division and conversions
for _, i in pairs{-16, -15, -3, -2, -1, 0, 1, 2, 3, 15} do
for _, j in pairs{-16, -15, -3, -2, -1, 1, 2, 3, 15} do
for _, ti in pairs{0, 0.0} do -- try 'i' as integer and as float
for _, tj in pairs{0, 0.0} do -- try 'j' as integer and as float
local x = i + ti
local y = j + tj
assert(i//j == math.floor(i/j))
end
end
end
end
assert(1//0.0 == 1/0)
assert(-1 // 0.0 == -1/0)
assert(eqT(3.5 // 1.5, 2.0))
assert(eqT(3.5 // -1.5, -3.0))
assert(maxint // maxint == 1)
assert(maxint // 1 == maxint)
assert((maxint - 1) // maxint == 0)
assert(maxint // (maxint - 1) == 1)
assert(minint // minint == 1)
assert(minint // minint == 1)
assert((minint + 1) // minint == 0)
assert(minint // (minint + 1) == 1)
assert(minint // 1 == minint)
assert(minint // -1 == -minint)
assert(minint // -2 == 2^(intbits - 2))
assert(maxint // -1 == -maxint)
-- negative exponents
do
assert(2^-3 == 1 / 2^3)
assert(eq((-3)^-3, 1 / (-3)^3))
for i = -3, 3 do -- variables avoid constant folding
for j = -3, 3 do
-- domain errors (0^(-n)) are not portable
if not _port or i ~= 0 or j > 0 then
assert(eq(i^j, 1 / i^(-j)))
end
end
end
end
-- comparison between floats and integers (border cases)
if floatbits < intbits then
assert(2.0^floatbits == (1 << floatbits))
assert(2.0^floatbits - 1.0 == (1 << floatbits) - 1.0)
assert(2.0^floatbits - 1.0 ~= (1 << floatbits))
-- float is rounded, int is not
assert(2.0^floatbits + 1.0 ~= (1 << floatbits) + 1)
else -- floats can express all integers with full accuracy
assert(maxint == maxint + 0.0)
assert(maxint - 1 == maxint - 1.0)
assert(minint + 1 == minint + 1.0)
assert(maxint ~= maxint - 1.0)
end
assert(maxint + 0.0 == 2.0^(intbits - 1) - 1.0)
assert(minint + 0.0 == minint)
assert(minint + 0.0 == -2.0^(intbits - 1))
-- order between floats and integers
assert(1 < 1.1); assert(not (1 < 0.9))
assert(1 <= 1.1); assert(not (1 <= 0.9))
assert(-1 < -0.9); assert(not (-1 < -1.1))
assert(1 <= 1.1); assert(not (-1 <= -1.1))
assert(-1 < -0.9); assert(not (-1 < -1.1))
assert(-1 <= -0.9); assert(not (-1 <= -1.1))
assert(minint <= minint + 0.0)
assert(minint + 0.0 <= minint)
assert(not (minint < minint + 0.0))
assert(not (minint + 0.0 < minint))
assert(maxint < minint * -1.0)
assert(maxint <= minint * -1.0)
do
local fmaxi1 = 2^(intbits - 1)
assert(maxint < fmaxi1)
assert(maxint <= fmaxi1)
assert(not (fmaxi1 <= maxint))
assert(minint <= -2^(intbits - 1))
assert(-2^(intbits - 1) <= minint)
end
if floatbits < intbits then
print("testing order (floats cannot represent all integers)")
local fmax = 2^floatbits
local ifmax = fmax | 0
assert(fmax < ifmax + 1)
assert(fmax - 1 < ifmax)
assert(-(fmax - 1) > -ifmax)
assert(not (fmax <= ifmax - 1))
assert(-fmax > -(ifmax + 1))
assert(not (-fmax >= -(ifmax - 1)))
assert(fmax/2 - 0.5 < ifmax//2)
assert(-(fmax/2 - 0.5) > -ifmax//2)
assert(maxint < 2^intbits)
assert(minint > -2^intbits)
assert(maxint <= 2^intbits)
assert(minint >= -2^intbits)
else
print("testing order (floats can represent all integers)")
assert(maxint < maxint + 1.0)
assert(maxint < maxint + 0.5)
assert(maxint - 1.0 < maxint)
assert(maxint - 0.5 < maxint)
assert(not (maxint + 0.0 < maxint))
assert(maxint + 0.0 <= maxint)
assert(not (maxint < maxint + 0.0))
assert(maxint + 0.0 <= maxint)
assert(maxint <= maxint + 0.0)
assert(not (maxint + 1.0 <= maxint))
assert(not (maxint + 0.5 <= maxint))
assert(not (maxint <= maxint - 1.0))
assert(not (maxint <= maxint - 0.5))
assert(minint < minint + 1.0)
assert(minint < minint + 0.5)
assert(minint <= minint + 0.5)
assert(minint - 1.0 < minint)
assert(minint - 1.0 <= minint)
assert(not (minint + 0.0 < minint))
assert(not (minint + 0.5 < minint))
assert(not (minint < minint + 0.0))
assert(minint + 0.0 <= minint)
assert(minint <= minint + 0.0)
assert(not (minint + 1.0 <= minint))
assert(not (minint + 0.5 <= minint))
assert(not (minint <= minint - 1.0))
end
do
local NaN = 0/0
assert(not (NaN < 0))
assert(not (NaN > minint))
assert(not (NaN <= -9))
assert(not (NaN <= maxint))
assert(not (NaN < maxint))
assert(not (minint <= NaN))
assert(not (minint < NaN))
end
-- avoiding errors at compile time
local function checkcompt (msg, code)
checkerror(msg, assert(load(code)))
end
checkcompt("divide by zero", "return 2 // 0")
checkcompt(msgf2i, "return 2.3 >> 0")
checkcompt(msgf2i, ("return 2.0^%d & 1"):format(intbits - 1))
checkcompt("field 'huge'", "return math.huge << 1")
checkcompt(msgf2i, ("return 1 | 2.0^%d"):format(intbits - 1))
checkcompt(msgf2i, "return 2.3 ~ '0.0'")
-- testing overflow errors when converting from float to integer (runtime)
local function f2i (x) return x | x end
checkerror(msgf2i, f2i, math.huge) -- +inf
checkerror(msgf2i, f2i, -math.huge) -- -inf
checkerror(msgf2i, f2i, 0/0) -- NaN
if floatbits < intbits then
-- conversion tests when float cannot represent all integers
assert(maxint + 1.0 == maxint + 0.0)
assert(minint - 1.0 == minint + 0.0)
checkerror(msgf2i, f2i, maxint + 0.0)
assert(f2i(2.0^(intbits - 2)) == 1 << (intbits - 2))
assert(f2i(-2.0^(intbits - 2)) == -(1 << (intbits - 2)))
assert((2.0^(floatbits - 1) + 1.0) // 1 == (1 << (floatbits - 1)) + 1)
-- maximum integer representable as a float
local mf = maxint - (1 << (floatbits - intbits)) + 1
assert(f2i(mf + 0.0) == mf) -- OK up to here
mf = mf + 1
assert(f2i(mf + 0.0) ~= mf) -- no more representable
else
-- conversion tests when float can represent all integers
assert(maxint + 1.0 > maxint)
assert(minint - 1.0 < minint)
assert(f2i(maxint + 0.0) == maxint)
checkerror("no integer rep", f2i, maxint + 1.0)
checkerror("no integer rep", f2i, minint - 1.0)
end
-- 'minint' should be representable as a float no matter the precision
assert(f2i(minint + 0.0) == minint)
-- testing numeric strings
assert("2" + 1 == 3)
assert("2 " + 1 == 3)
assert(" -2 " + 1 == -1)
assert(" -0xa " + 1 == -9)
-- Literal integer Overflows (new behavior in 5.3.3)
do
-- no overflows
assert(eqT(tonumber(tostring(maxint)), maxint))
assert(eqT(tonumber(tostring(minint)), minint))
-- add 1 to last digit as a string (it cannot be 9...)
local function incd (n)
local s = string.format("%d", n)
s = string.gsub(s, "%d$", function (d)
assert(d ~= '9')
return string.char(string.byte(d) + 1)
end)
return s
end
-- 'tonumber' with overflow by 1
assert(eqT(tonumber(incd(maxint)), maxint + 1.0))
assert(eqT(tonumber(incd(minint)), minint - 1.0))
-- large numbers
assert(eqT(tonumber("1"..string.rep("0", 30)), 1e30))
assert(eqT(tonumber("-1"..string.rep("0", 30)), -1e30))
-- hexa format still wraps around
assert(eqT(tonumber("0x1"..string.rep("0", 30)), 0))
-- lexer in the limits
assert(minint == load("return " .. minint)())
assert(eqT(maxint, load("return " .. maxint)()))
assert(eqT(10000000000000000000000.0, 10000000000000000000000))
assert(eqT(-10000000000000000000000.0, -10000000000000000000000))
end
-- testing 'tonumber'
-- 'tonumber' with numbers
assert(tonumber(3.4) == 3.4)
assert(eqT(tonumber(3), 3))
assert(eqT(tonumber(maxint), maxint) and eqT(tonumber(minint), minint))
assert(tonumber(1/0) == 1/0)
-- 'tonumber' with strings
assert(tonumber("0") == 0)
assert(tonumber("") == nil)
assert(tonumber(" ") == nil)
assert(tonumber("-") == nil)
assert(tonumber(" -0x ") == nil)
assert(tonumber{} == nil)
assert(tonumber'+0.01' == 1/100 and tonumber'+.01' == 0.01 and
tonumber'.01' == 0.01 and tonumber'-1.' == -1 and
tonumber'+1.' == 1)
assert(tonumber'+ 0.01' == nil and tonumber'+.e1' == nil and
tonumber'1e' == nil and tonumber'1.0e+' == nil and
tonumber'.' == nil)
assert(tonumber('-012') == -010-2)
assert(tonumber('-1.2e2') == - - -120)
assert(tonumber("0xffffffffffff") == (1 << (4*12)) - 1)
assert(tonumber("0x"..string.rep("f", (intbits//4))) == -1)
assert(tonumber("-0x"..string.rep("f", (intbits//4))) == 1)
-- testing 'tonumber' with base
assert(tonumber(' 001010 ', 2) == 10)
assert(tonumber(' 001010 ', 10) == 001010)
assert(tonumber(' -1010 ', 2) == -10)
assert(tonumber('10', 36) == 36)
assert(tonumber(' -10 ', 36) == -36)
assert(tonumber(' +1Z ', 36) == 36 + 35)
assert(tonumber(' -1z ', 36) == -36 + -35)
assert(tonumber('-fFfa', 16) == -(10+(16*(15+(16*(15+(16*15)))))))
assert(tonumber(string.rep('1', (intbits - 2)), 2) + 1 == 2^(intbits - 2))
assert(tonumber('ffffFFFF', 16)+1 == (1 << 32))
assert(tonumber('0ffffFFFF', 16)+1 == (1 << 32))
assert(tonumber('-0ffffffFFFF', 16) - 1 == -(1 << 40))
for i = 2,36 do
local i2 = i * i
local i10 = i2 * i2 * i2 * i2 * i2 -- i^10
assert(tonumber('\t10000000000\t', i) == i10)
end
if not _soft then
-- tests with very long numerals
assert(tonumber("0x"..string.rep("f", 13)..".0") == 2.0^(4*13) - 1)
assert(tonumber("0x"..string.rep("f", 150)..".0") == 2.0^(4*150) - 1)
assert(tonumber("0x"..string.rep("f", 300)..".0") == 2.0^(4*300) - 1)
assert(tonumber("0x"..string.rep("f", 500)..".0") == 2.0^(4*500) - 1)
assert(tonumber('0x3.' .. string.rep('0', 1000)) == 3)
assert(tonumber('0x' .. string.rep('0', 1000) .. 'a') == 10)
assert(tonumber('0x0.' .. string.rep('0', 13).."1") == 2.0^(-4*14))
assert(tonumber('0x0.' .. string.rep('0', 150).."1") == 2.0^(-4*151))
assert(tonumber('0x0.' .. string.rep('0', 300).."1") == 2.0^(-4*301))
assert(tonumber('0x0.' .. string.rep('0', 500).."1") == 2.0^(-4*501))
assert(tonumber('0xe03' .. string.rep('0', 1000) .. 'p-4000') == 3587.0)
assert(tonumber('0x.' .. string.rep('0', 1000) .. '74p4004') == 0x7.4)
end
-- testing 'tonumber' for invalid formats
local function f (...)
if select('#', ...) == 1 then
return (...)
else
return "***"
end
end
assert(f(tonumber('fFfa', 15)) == nil)
assert(f(tonumber('099', 8)) == nil)
assert(f(tonumber('1\0', 2)) == nil)
assert(f(tonumber('', 8)) == nil)
assert(f(tonumber(' ', 9)) == nil)
assert(f(tonumber(' ', 9)) == nil)
assert(f(tonumber('0xf', 10)) == nil)
assert(f(tonumber('inf')) == nil)
assert(f(tonumber(' INF ')) == nil)
assert(f(tonumber('Nan')) == nil)
assert(f(tonumber('nan')) == nil)
assert(f(tonumber(' ')) == nil)
assert(f(tonumber('')) == nil)
assert(f(tonumber('1 a')) == nil)
assert(f(tonumber('1 a', 2)) == nil)
assert(f(tonumber('1\0')) == nil)
assert(f(tonumber('1 \0')) == nil)
assert(f(tonumber('1\0 ')) == nil)
assert(f(tonumber('e1')) == nil)
assert(f(tonumber('e 1')) == nil)
assert(f(tonumber(' 3.4.5 ')) == nil)
-- testing 'tonumber' for invalid hexadecimal formats
assert(tonumber('0x') == nil)
assert(tonumber('x') == nil)
assert(tonumber('x3') == nil)
assert(tonumber('0x3.3.3') == nil) -- two decimal points
assert(tonumber('00x2') == nil)
assert(tonumber('0x 2') == nil)
assert(tonumber('0 x2') == nil)
assert(tonumber('23x') == nil)
assert(tonumber('- 0xaa') == nil)
assert(tonumber('-0xaaP ') == nil) -- no exponent
assert(tonumber('0x0.51p') == nil)
assert(tonumber('0x5p+-2') == nil)
-- testing hexadecimal numerals
assert(0x10 == 16 and 0xfff == 2^12 - 1 and 0XFB == 251)
assert(0x0p12 == 0 and 0x.0p-3 == 0)
assert(0xFFFFFFFF == (1 << 32) - 1)
assert(tonumber('+0x2') == 2)
assert(tonumber('-0xaA') == -170)
assert(tonumber('-0xffFFFfff') == -(1 << 32) + 1)
-- possible confusion with decimal exponent
assert(0E+1 == 0 and 0xE+1 == 15 and 0xe-1 == 13)
-- floating hexas
assert(tonumber(' 0x2.5 ') == 0x25/16)
assert(tonumber(' -0x2.5 ') == -0x25/16)
assert(tonumber(' +0x0.51p+8 ') == 0x51)
assert(0x.FfffFFFF == 1 - '0x.00000001')
assert('0xA.a' + 0 == 10 + 10/16)
assert(0xa.aP4 == 0XAA)
assert(0x4P-2 == 1)
assert(0x1.1 == '0x1.' + '+0x.1')
assert(0Xabcdef.0 == 0x.ABCDEFp+24)
assert(1.1 == 1.+.1)
assert(100.0 == 1E2 and .01 == 1e-2)
assert(1111111111 - 1111111110 == 1000.00e-03)
assert(1.1 == '1.'+'.1')
assert(tonumber'1111111111' - tonumber'1111111110' ==
tonumber" +0.001e+3 \n\t")
assert(0.1e-30 > 0.9E-31 and 0.9E30 < 0.1e31)
assert(0.123456 > 0.123455)
assert(tonumber('+1.23E18') == 1.23*10.0^18)
-- testing order operators
assert(not(1<1) and (1<2) and not(2<1))
assert(not('a'<'a') and ('a'<'b') and not('b'<'a'))
assert((1<=1) and (1<=2) and not(2<=1))
assert(('a'<='a') and ('a'<='b') and not('b'<='a'))
assert(not(1>1) and not(1>2) and (2>1))
assert(not('a'>'a') and not('a'>'b') and ('b'>'a'))
assert((1>=1) and not(1>=2) and (2>=1))
assert(('a'>='a') and not('a'>='b') and ('b'>='a'))
assert(1.3 < 1.4 and 1.3 <= 1.4 and not (1.3 < 1.3) and 1.3 <= 1.3)
-- testing mod operator
assert(eqT(-4 % 3, 2))
assert(eqT(4 % -3, -2))
assert(eqT(-4.0 % 3, 2.0))
assert(eqT(4 % -3.0, -2.0))
assert(math.pi - math.pi % 1 == 3)
assert(math.pi - math.pi % 0.001 == 3.141)
assert(eqT(minint % minint, 0))
assert(eqT(maxint % maxint, 0))
assert((minint + 1) % minint == minint + 1)
assert((maxint - 1) % maxint == maxint - 1)
assert(minint % maxint == maxint - 1)
assert(minint % -1 == 0)
assert(minint % -2 == 0)
assert(maxint % -2 == -1)
-- non-portable tests because Windows C library cannot compute
-- fmod(1, huge) correctly
if not _port then
local function anan (x) assert(isNaN(x)) end -- assert Not a Number
anan(0.0 % 0)
anan(1.3 % 0)
anan(math.huge % 1)
anan(math.huge % 1e30)
anan(-math.huge % 1e30)
anan(-math.huge % -1e30)
assert(1 % math.huge == 1)
assert(1e30 % math.huge == 1e30)
assert(1e30 % -math.huge == -math.huge)
assert(-1 % math.huge == math.huge)
assert(-1 % -math.huge == -1)
end
-- testing unsigned comparisons
assert(math.ult(3, 4))
assert(not math.ult(4, 4))
assert(math.ult(-2, -1))
assert(math.ult(2, -1))
assert(not math.ult(-2, -2))
assert(math.ult(maxint, minint))
assert(not math.ult(minint, maxint))
assert(eq(math.sin(-9.8)^2 + math.cos(-9.8)^2, 1))
assert(eq(math.tan(math.pi/4), 1))
assert(eq(math.sin(math.pi/2), 1) and eq(math.cos(math.pi/2), 0))
assert(eq(math.atan(1), math.pi/4) and eq(math.acos(0), math.pi/2) and
eq(math.asin(1), math.pi/2))
assert(eq(math.deg(math.pi/2), 90) and eq(math.rad(90), math.pi/2))
assert(math.abs(-10.43) == 10.43)
assert(eqT(math.abs(minint), minint))
assert(eqT(math.abs(maxint), maxint))
assert(eqT(math.abs(-maxint), maxint))
assert(eq(math.atan(1,0), math.pi/2))
assert(math.fmod(10,3) == 1)
assert(eq(math.sqrt(10)^2, 10))
assert(eq(math.log(2, 10), math.log(2)/math.log(10)))
assert(eq(math.log(2, 2), 1))
assert(eq(math.log(9, 3), 2))
assert(eq(math.exp(0), 1))
assert(eq(math.sin(10), math.sin(10%(2*math.pi))))
assert(tonumber(' 1.3e-2 ') == 1.3e-2)
assert(tonumber(' -1.00000000000001 ') == -1.00000000000001)
-- testing constant limits
-- 2^23 = 8388608
assert(8388609 + -8388609 == 0)
assert(8388608 + -8388608 == 0)
assert(8388607 + -8388607 == 0)
do -- testing floor & ceil
assert(eqT(math.floor(3.4), 3))
assert(eqT(math.ceil(3.4), 4))
assert(eqT(math.floor(-3.4), -4))
assert(eqT(math.ceil(-3.4), -3))
assert(eqT(math.floor(maxint), maxint))
assert(eqT(math.ceil(maxint), maxint))
assert(eqT(math.floor(minint), minint))
assert(eqT(math.floor(minint + 0.0), minint))
assert(eqT(math.ceil(minint), minint))
assert(eqT(math.ceil(minint + 0.0), minint))
assert(math.floor(1e50) == 1e50)
assert(math.ceil(1e50) == 1e50)
assert(math.floor(-1e50) == -1e50)
assert(math.ceil(-1e50) == -1e50)
for _, p in pairs{31,32,63,64} do
assert(math.floor(2^p) == 2^p)
assert(math.floor(2^p + 0.5) == 2^p)
assert(math.ceil(2^p) == 2^p)
assert(math.ceil(2^p - 0.5) == 2^p)
end
checkerror("number expected", math.floor, {})
checkerror("number expected", math.ceil, print)
assert(eqT(math.tointeger(minint), minint))
assert(eqT(math.tointeger(minint .. ""), minint))
assert(eqT(math.tointeger(maxint), maxint))
assert(eqT(math.tointeger(maxint .. ""), maxint))
assert(eqT(math.tointeger(minint + 0.0), minint))
assert(math.tointeger(0.0 - minint) == nil)
assert(math.tointeger(math.pi) == nil)
assert(math.tointeger(-math.pi) == nil)
assert(math.floor(math.huge) == math.huge)
assert(math.ceil(math.huge) == math.huge)
assert(math.tointeger(math.huge) == nil)
assert(math.floor(-math.huge) == -math.huge)
assert(math.ceil(-math.huge) == -math.huge)
assert(math.tointeger(-math.huge) == nil)
assert(math.tointeger("34.0") == 34)
assert(math.tointeger("34.3") == nil)
assert(math.tointeger({}) == nil)
assert(math.tointeger(0/0) == nil) -- NaN
end
-- testing fmod for integers
for i = -6, 6 do
for j = -6, 6 do
if j ~= 0 then
local mi = math.fmod(i, j)
local mf = math.fmod(i + 0.0, j)
assert(mi == mf)
assert(math.type(mi) == 'integer' and math.type(mf) == 'float')
if (i >= 0 and j >= 0) or (i <= 0 and j <= 0) or mi == 0 then
assert(eqT(mi, i % j))
end
end
end
end
assert(eqT(math.fmod(minint, minint), 0))
assert(eqT(math.fmod(maxint, maxint), 0))
assert(eqT(math.fmod(minint + 1, minint), minint + 1))
assert(eqT(math.fmod(maxint - 1, maxint), maxint - 1))
checkerror("zero", math.fmod, 3, 0)
do -- testing max/min
checkerror("value expected", math.max)
checkerror("value expected", math.min)
assert(eqT(math.max(3), 3))
assert(eqT(math.max(3, 5, 9, 1), 9))
assert(math.max(maxint, 10e60) == 10e60)
assert(eqT(math.max(minint, minint + 1), minint + 1))
assert(eqT(math.min(3), 3))
assert(eqT(math.min(3, 5, 9, 1), 1))
assert(math.min(3.2, 5.9, -9.2, 1.1) == -9.2)
assert(math.min(1.9, 1.7, 1.72) == 1.7)
assert(math.min(-10e60, minint) == -10e60)
assert(eqT(math.min(maxint, maxint - 1), maxint - 1))
assert(eqT(math.min(maxint - 2, maxint, maxint - 1), maxint - 2))
end
-- testing implicit convertions
local a,b = '10', '20'
assert(a*b == 200 and a+b == 30 and a-b == -10 and a/b == 0.5 and -b == -20)
assert(a == '10' and b == '20')
do
print("testing -0 and NaN")
local mz, z = -0.0, 0.0
assert(mz == z)
assert(1/mz < 0 and 0 < 1/z)
local a = {[mz] = 1}
assert(a[z] == 1 and a[mz] == 1)
a[z] = 2
assert(a[z] == 2 and a[mz] == 2)
local inf = math.huge * 2 + 1
mz, z = -1/inf, 1/inf
assert(mz == z)
assert(1/mz < 0 and 0 < 1/z)
local NaN = inf - inf
assert(NaN ~= NaN)
assert(not (NaN < NaN))
assert(not (NaN <= NaN))
assert(not (NaN > NaN))
assert(not (NaN >= NaN))
assert(not (0 < NaN) and not (NaN < 0))
local NaN1 = 0/0
assert(NaN ~= NaN1 and not (NaN <= NaN1) and not (NaN1 <= NaN))
local a = {}
assert(not pcall(rawset, a, NaN, 1))
assert(a[NaN] == nil)
a[1] = 1
assert(not pcall(rawset, a, NaN, 1))
assert(a[NaN] == nil)
-- strings with same binary representation as 0.0 (might create problems
-- for constant manipulation in the pre-compiler)
local a1, a2, a3, a4, a5 = 0, 0, "\0\0\0\0\0\0\0\0", 0, "\0\0\0\0\0\0\0\0"
assert(a1 == a2 and a2 == a4 and a1 ~= a3)
assert(a3 == a5)
end
print("testing 'math.random'")
math.randomseed(0)
do -- test random for floats
local max = -math.huge
local min = math.huge
for i = 0, 20000 do
local t = math.random()
assert(0 <= t and t < 1)
max = math.max(max, t)
min = math.min(min, t)
if eq(max, 1, 0.001) and eq(min, 0, 0.001) then
goto ok
end
end
-- loop ended without satisfing condition
assert(false)
::ok::
end
do
local function aux (p, lim) -- test random for small intervals
local x1, x2
if #p == 1 then x1 = 1; x2 = p[1]
else x1 = p[1]; x2 = p[2]
end
local mark = {}; local count = 0 -- to check that all values appeared
for i = 0, lim or 2000 do
local t = math.random(table.unpack(p))
assert(x1 <= t and t <= x2)
if not mark[t] then -- new value
mark[t] = true
count = count + 1
end
if count == x2 - x1 + 1 then -- all values appeared; OK
goto ok
end
end
-- loop ended without satisfing condition
assert(false)
::ok::
end
aux({-10,0})
aux({6})
aux({-10, 10})
aux({minint, minint})
aux({maxint, maxint})
aux({minint, minint + 9})
aux({maxint - 3, maxint})
end
do
local function aux(p1, p2) -- test random for large intervals
local max = minint
local min = maxint
local n = 200
local mark = {}; local count = 0 -- to count how many different values
for _ = 1, n do
local t = math.random(p1, p2)
max = math.max(max, t)
min = math.min(min, t)
if not mark[t] then -- new value
mark[t] = true
count = count + 1
end
end
-- at least 80% of values are different
assert(count >= n * 0.8)
-- min and max not too far from formal min and max
local diff = (p2 - p1) // 8
assert(min < p1 + diff and max > p2 - diff)
end
aux(0, maxint)
aux(1, maxint)
aux(minint, -1)
aux(minint // 2, maxint // 2)
end
for i=1,100 do
assert(math.random(maxint) > 0)
assert(math.random(minint, -1) < 0)
end
assert(not pcall(math.random, 1, 2, 3)) -- too many arguments
-- empty interval
assert(not pcall(math.random, minint + 1, minint))
assert(not pcall(math.random, maxint, maxint - 1))
assert(not pcall(math.random, maxint, minint))
-- interval too large
assert(not pcall(math.random, minint, 0))
assert(not pcall(math.random, -1, maxint))
assert(not pcall(math.random, minint // 2, maxint // 2 + 1))
print('OK')