forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfibonacci.py
244 lines (214 loc) · 6.65 KB
/
fibonacci.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""
Calculates the Fibonacci sequence using iteration, recursion, memoization,
and a simplified form of Binet's formula
NOTE 1: the iterative, recursive, memoization functions are more accurate than
the Binet's formula function because the Binet formula function uses floats
NOTE 2: the Binet's formula function is much more limited in the size of inputs
that it can handle due to the size limitations of Python floats
See benchmark numbers in __main__ for performance comparisons/
https://en.wikipedia.org/wiki/Fibonacci_number for more information
"""
import functools
from collections.abc import Iterator
from math import sqrt
from time import time
def time_func(func, *args, **kwargs):
"""
Times the execution of a function with parameters
"""
start = time()
output = func(*args, **kwargs)
end = time()
if int(end - start) > 0:
print(f"{func.__name__} runtime: {(end - start):0.4f} s")
else:
print(f"{func.__name__} runtime: {(end - start) * 1000:0.4f} ms")
return output
def fib_iterative_yield(n: int) -> Iterator[int]:
"""
Calculates the first n (1-indexed) Fibonacci numbers using iteration with yield
>>> list(fib_iterative_yield(0))
[0]
>>> tuple(fib_iterative_yield(1))
(0, 1)
>>> tuple(fib_iterative_yield(5))
(0, 1, 1, 2, 3, 5)
>>> tuple(fib_iterative_yield(10))
(0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55)
>>> tuple(fib_iterative_yield(-1))
Traceback (most recent call last):
...
ValueError: n is negative
"""
if n < 0:
raise ValueError("n is negative")
a, b = 0, 1
yield a
for _ in range(n):
yield b
a, b = b, a + b
def fib_iterative(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using iteration
>>> fib_iterative(0)
[0]
>>> fib_iterative(1)
[0, 1]
>>> fib_iterative(5)
[0, 1, 1, 2, 3, 5]
>>> fib_iterative(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_iterative(-1)
Traceback (most recent call last):
...
ValueError: n is negative
"""
if n < 0:
raise ValueError("n is negative")
if n == 0:
return [0]
fib = [0, 1]
for _ in range(n - 1):
fib.append(fib[-1] + fib[-2])
return fib
def fib_recursive(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using recursion
>>> fib_iterative(0)
[0]
>>> fib_iterative(1)
[0, 1]
>>> fib_iterative(5)
[0, 1, 1, 2, 3, 5]
>>> fib_iterative(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_iterative(-1)
Traceback (most recent call last):
...
ValueError: n is negative
"""
def fib_recursive_term(i: int) -> int:
"""
Calculates the i-th (0-indexed) Fibonacci number using recursion
>>> fib_recursive_term(0)
0
>>> fib_recursive_term(1)
1
>>> fib_recursive_term(5)
5
>>> fib_recursive_term(10)
55
>>> fib_recursive_term(-1)
Traceback (most recent call last):
...
Exception: n is negative
"""
if i < 0:
raise ValueError("n is negative")
if i < 2:
return i
return fib_recursive_term(i - 1) + fib_recursive_term(i - 2)
if n < 0:
raise ValueError("n is negative")
return [fib_recursive_term(i) for i in range(n + 1)]
def fib_recursive_cached(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using recursion
>>> fib_iterative(0)
[0]
>>> fib_iterative(1)
[0, 1]
>>> fib_iterative(5)
[0, 1, 1, 2, 3, 5]
>>> fib_iterative(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_iterative(-1)
Traceback (most recent call last):
...
ValueError: n is negative
"""
@functools.cache
def fib_recursive_term(i: int) -> int:
"""
Calculates the i-th (0-indexed) Fibonacci number using recursion
"""
if i < 0:
raise ValueError("n is negative")
if i < 2:
return i
return fib_recursive_term(i - 1) + fib_recursive_term(i - 2)
if n < 0:
raise ValueError("n is negative")
return [fib_recursive_term(i) for i in range(n + 1)]
def fib_memoization(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using memoization
>>> fib_memoization(0)
[0]
>>> fib_memoization(1)
[0, 1]
>>> fib_memoization(5)
[0, 1, 1, 2, 3, 5]
>>> fib_memoization(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_iterative(-1)
Traceback (most recent call last):
...
ValueError: n is negative
"""
if n < 0:
raise ValueError("n is negative")
# Cache must be outside recursuive function
# other it will reset every time it calls itself.
cache: dict[int, int] = {0: 0, 1: 1, 2: 1} # Prefilled cache
def rec_fn_memoized(num: int) -> int:
if num in cache:
return cache[num]
value = rec_fn_memoized(num - 1) + rec_fn_memoized(num - 2)
cache[num] = value
return value
return [rec_fn_memoized(i) for i in range(n + 1)]
def fib_binet(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using a simplified form
of Binet's formula:
https://en.m.wikipedia.org/wiki/Fibonacci_number#Computation_by_rounding
NOTE 1: this function diverges from fib_iterative at around n = 71, likely
due to compounding floating-point arithmetic errors
NOTE 2: this function doesn't accept n >= 1475 because it overflows
thereafter due to the size limitations of Python floats
>>> fib_binet(0)
[0]
>>> fib_binet(1)
[0, 1]
>>> fib_binet(5)
[0, 1, 1, 2, 3, 5]
>>> fib_binet(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_binet(-1)
Traceback (most recent call last):
...
ValueError: n is negative
>>> fib_binet(1475)
Traceback (most recent call last):
...
ValueError: n is too large
"""
if n < 0:
raise ValueError("n is negative")
if n >= 1475:
raise ValueError("n is too large")
sqrt_5 = sqrt(5)
phi = (1 + sqrt_5) / 2
return [round(phi**i / sqrt_5) for i in range(n + 1)]
if __name__ == "__main__":
from doctest import testmod
testmod()
# Time on an M1 MacBook Pro -- Fastest to slowest
num = 30
time_func(fib_iterative_yield, num) # 0.0012 ms
time_func(fib_iterative, num) # 0.0031 ms
time_func(fib_binet, num) # 0.0062 ms
time_func(fib_memoization, num) # 0.0100 ms
time_func(fib_recursive_cached, num) # 0.0153 ms
time_func(fib_recursive, num) # 257.0910 ms