forked from jampekka/gazesim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgazesim.py
248 lines (197 loc) · 5.81 KB
/
gazesim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from __future__ import division
import itertools
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats
from besseleye import eyefilter
class JumpingObjectPositionSimulator(object):
def __init__(self, width=20.0, height=20.0, rate=1.0/0.250):
self.width = width
self.height = height
self.pos = [0.0, 0.0]
self.rate = rate
def __call__(self, dt):
# In a homogenous Poisson process the probability
# that there's exactly zero events during dt reduces
# to exp(-rate * dt). So we can check if we
# have an event as follows:
if np.random.rand() < np.exp(-self.rate*dt):
# No event at this time
return self.pos, False
x = (np.random.rand()-0.5)*self.width
y = (np.random.rand()-0.5)*self.height
self.pos = [x, y]
return self.pos, True
class LinearPursuit(object):
def __init__(self, x0, x1, speed):
x0 = np.asarray(x0)
x1 = np.asarray(x1)
self.endtime = np.linalg.norm(x1-x0)/speed
self.t = 0.0
self.x0 = x0
self.x1 = x1
def __call__(self, dt):
# NOTE: The caller is responsible for giving
# dt of 0 for the "first sample"
self.t += dt
if self.t >= self.endtime:
return self.x1
reltime = self.t/self.endtime
return self.x0*(1-reltime) + self.x1*reltime
class RandomLinearPursuitSimulator(object):
def __init__(self, width=20.0, height=20.0, mean_duration=0.250,
pursuit_speed=scipy.stats.gamma(1.0, scale=10.0).rvs):
self.width = width
self.height = height
self.pos = [0.0, 0.0]
self.mean_duration = mean_duration
self.pursuit_speed = pursuit_speed
self.current_pursuit = LinearPursuit(self.pos, self.pos, pursuit_speed())
@property
def extent(self):
return (-self.width*0.5, self.width*0.5), (-self.height*0.5, self.height*0.5)
def __call__(self, dt):
# In a homogenous Poisson process the probability
# that there's exactly zero events during dt reduces
# to exp(-rate * dt). So we can check if we
# have an event as follows:
if np.random.rand() < np.exp(-1.0/self.mean_duration*dt):
# No event at this time
return self.current_pursuit(dt), False
x = (np.random.rand()-0.5)*self.width
y = (np.random.rand()-0.5)*self.height
src = [x, y]
x = (np.random.rand()-0.5)*self.width
y = (np.random.rand()-0.5)*self.height
target = [x, y]
self.current_pursuit = LinearPursuit(src, target, self.pursuit_speed())
return self.current_pursuit(0.0), True
def constant_accel_saccade(a):
class saccade(object):
def __init__(self, init_dt, x0, x1):
diff = np.subtract(x1, x0)
length = np.linalg.norm(diff)
direction = diff/length
T = np.sqrt(length/a)*2
self.x0 = x0
self.x1 = x1
self.direction = direction
self.T = T
self.duration = T
self.mean_speed = length/T
self.max_speed = a*(T/2.0)
self.max_accel = a
def __iter__(self):
x0 = self.x0
T = self.T
direction = self.direction
t = yield x0
while t < T/2.0:
dist = 0.5*a*t**2
t += yield x0 + dist*direction
while t < T:
dist = 1/4*a*(-2*t**2 + 4*t*T - T**2)
t += yield x0 + dist*direction
yield self.x1
return saccade
def gaussian_noiser(sx=1.0, sy=1.0):
def noiser(dt, xy):
x = xy[0]+np.random.randn()*sx
y = xy[1]+np.random.randn()*sy
return [x,y]
return noiser
def infrange(i=0):
while True:
yield i
i += 1
def generate_sequence(simulator, noiser, sampling_rate=500.0):
dt = 1.0/sampling_rate
t = 0.0
while True:
pos, had_saccade = simulator(dt)
gaze = noiser(dt, pos)
yield t, pos, gaze, had_saccade
t += dt
def test():
sampling_rate = 100.0
duration = 60.0
simulator = BallisticObjectSimulator(rate=1.0/1.0)
noiser = gaussian_noiser()
generator = generate_sequence(simulator, noiser)
#print list(itertools.islice(generator, int(duration*sampling_rate)))
t, pos, gaze, saccades = zip(*itertools.islice(generator, int(duration*sampling_rate)))
plt.plot(t, zip(*pos)[0])
plt.plot(t, eyefilter(zip(*gaze)[0], sampling_rate), '.')
plt.show()
def plot_main_sequence():
origin = np.zeros(2)
direction = np.ones(2)/np.sqrt(2)
saccade_gen=constant_accel_saccade(9000.0)
d = []
for dist in np.arange(0.01, 100.0):
saccade = saccade_gen(0, origin, dist*direction)
d.append([dist, saccade.max_speed])
plt.loglog(*zip(*d))
plt.show()
def dummy_main_series():
#main_series = lambda distance: distance*5
main_series = lambda distance: 10*distance
distances = np.linspace(0.01, 100, 1000)
plt.subplot(2,1,1)
plt.plot(distances, main_series(distances))
plt.subplot(2,1,2)
plt.loglog(distances, main_series(distances))
plt.show()
if __name__ == '__main__':
#test()
#plot_main_sequence()
#dummy_main_series()
import time
sim = RandomLinearPursuitSimulator()
noiser = gaussian_noiser()
noiser = lambda dt, pos: pos
#x, y = zip(*xy)
#plt.plot(x)
#plt.xlim(-0.5*sim.width, 0.5*sim.width)
#plt.ylim(-0.5*sim.width, 0.5*sim.width)
plt.xlim(sim.extent[0])
plt.ylim(sim.extent[1])
plt.ion()
npoints = 10
pointstack = []
prev_gaze = None
prev_t = 0.0
gazes = []
thruths = []
times = []
rate = 1000.0
cross, = plt.plot(0, 0, 'o')
for i in range(10000):
#t = time.time()
t = i/rate
times.append(t)
dt = t - prev_t
prev_t = t
pos, is_split = sim(dt)
gaze = noiser(dt, pos)
gazes.append(gaze)
thruths.append(pos)
continue
cross.set_data(pos[0], pos[1]); plt.pause(1.0/rate)
continue
for gp in pointstack:
gp.set_alpha(gp.get_alpha()*0.8)
if prev_gaze is not None:
gp, = plt.plot([gaze[0], prev_gaze[0]], [gaze[1], prev_gaze[1]], '-', color='red', alpha=1.0, markersize=6, linewidth=4)
pointstack.append(gp)
prev_gaze = gaze
if len(pointstack) > npoints:
gp = pointstack.pop(0)
gp.remove()
plt.pause(1.0/rate)
plt.clf()
plt.ioff()
plt.plot(times, zip(*thruths)[0], color='green')
plt.plot(times, eyefilter(zip(*gazes)[0], rate), 'r.', color='red')
#plt.plot(times, zip(*gazes)[0], 'r.', color='red')
plt.show()