-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdata_neural_fuzz_pdf_obj.py
631 lines (537 loc) · 26.5 KB
/
data_neural_fuzz_pdf_obj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
"""
PDF OBJ 9
- New in version 9 data fuzz
-- Create test data for data fuzzing (i.e p_t = 0.50) and prefix update.
-- Date: 1397-04-17
- New in version 8
-- Fuzzing back to generate_and_fuzz method.
-- Perplexity and cross entropy add to metrics list.
-- Use some Keras backend to reset model graph and state.
-- Lets pdf_file_incremental_update_4.py call the generate_and_fuzz method.
- New in version 7
-- Use for bidirectional LSTM model, model=model9
- New in version 6
-- Train with 256 LSTM search, model=model_8
-- Train on large dataset for first time!
-New in version 5:
-- Data generator fixed.
-- Train on large dataset for first time!
-New in version 4:
-- Changing the data generator method for use with model.fit_generator()
-New in version 3:
-- Add support for training in large dataset with the help of python generators.
-- Add callbacks to log most of training time events.
-- File and directory now mange by code in appropriate manner for each train run.
-- Add class FileFormatFuzz to do learn and fuzz process in one script.
-- Note: The ability of training small dataset in memory with model.fit() method was include in version 3.
"""
from __future__ import print_function
__version__ = '0.9.1'
__author__ = 'Morteza'
import sys
import os
import datetime
import random
import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.optimizers import RMSprop, Adam
from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard, CSVLogger, LambdaCallback
from keras.utils import plot_model
import pdf_object_preprocess as preprocess
from config import learning_config
import deep_models
def cross_entropy(y_true, y_pred):
"""
Compute cross_entropy loss metric
:param y_true:
:param y_pred:
:return:
"""
return K.categorical_crossentropy(y_true, y_pred)
def spars_cross_entropy(y_true, y_pred):
return K.sparse_categorical_crossentropy(y_true, y_pred)
def perplexity(y_true, y_pred):
"""
Compute perplexity metric
:param y_true:
:param y_pred:
:return:
"""
ce = K.categorical_crossentropy(y_true, y_pred)
# pp = K.pow(np.e, ce) # Or 2?
# pp = K.pow(2., ce) # Or np.e
pp = K.exp(ce)
# print('Perplexity value in perplexity function: ', K.eval(pp))
return pp
class FileFormatFuzzer(object):
"""
Main class for learn and fuzz process
"""
def __init__(self, maxlen=85, step=1, batch_size=128):
"""
:param maxlen:
:param step:
:param batch_size:
"""
# os.chdir('./')
# learning hyper-parameters
self.maxlen = maxlen
self.step = step
self.batch_size = batch_size
self.text_all = ''
self.text_training = ''
self.text_validation = ''
self.text_test = ''
self.chars = None
self.char_indices = None
self.indices_char = None
# self.model = None
K.reset_uids()
K.clear_session()
self.load_dataset()
def define_model(self, input_dim, output_dim):
"""
Build the model: a single LSTM layer # We need to deep it # now is deep :)
:param input_dim:
:param output_dim:
:return:
"""
model, model_name = deep_models.model_7(input_dim, output_dim)
return model, model_name
def load_dataset(self):
""" Load all 3 part of each dataset and building dictionary index """
if learning_config['dataset_size'] == 'small':
self.text_training = preprocess.load_from_file(learning_config['small_training_set_path'])
self.text_validation = preprocess.load_from_file(learning_config['small_validation_set_path'])
self.text_test = preprocess.load_from_file(learning_config['small_testing_set_path'])
elif learning_config['dataset_size'] == 'medium':
self.text_training = preprocess.load_from_file(learning_config['medium_training_set_path'])
self.text_validation = preprocess.load_from_file(learning_config['medium_validation_set_path'])
self.text_test = preprocess.load_from_file(learning_config['medium_testing_set_path'])
elif learning_config['dataset_size'] == 'large':
self.text_training = preprocess.load_from_file(learning_config['large_training_set_path'])
self.text_validation = preprocess.load_from_file(learning_config['large_validation_set_path'])
self.text_test = preprocess.load_from_file(learning_config['large_testing_set_path'])
self.text_all = self.text_training + self.text_validation + self.text_test
print('Total corpus length:', len(self.text_all))
self.chars = sorted(list(set(self.text_all)))
print('Total corpus chars:', len(self.chars))
# print(chars)
# Building dictionary index
print('Building dictionary index ...')
self.char_indices = dict((c, i) for i, c in enumerate(self.chars))
# print(char_indices)
self.indices_char = dict((i, c) for i, c in enumerate(self.chars))
# print(indices_char)
def generate_samples(self, text):
"""Cut the text in semi-redundant sequences of maxlen characters"""
sentences = [] # List of all sentence as input
next_chars = [] # List of all next chars as labels
for i in range(0, len(text) - self.maxlen, self.step): # arg2 why this?
sentences.append(text[i: i + self.maxlen])
# print(sentences)
next_chars.append(text[i + self.maxlen])
# print(next_chars)
print('Number of semi sequences or samples:', len(sentences))
return sentences, next_chars
def data_generator(self, sentences, next_chars):
"""
Batch data generator for large dataset not fit completely in memory
# Index j now increase Shuffle
:param sentences:
:param next_chars:
:return:
"""
j = random.randint(0, len(sentences) - (self.batch_size+1))
# print('Vectorization...')
while True:
# Fix generator :))
x = np.zeros((self.batch_size, self.maxlen, len(self.chars)), dtype=np.bool)
y = np.zeros((self.batch_size, len(self.chars)), dtype=np.bool)
# j = random.randint(0, len(sentences) - (self.batch_size + 1))
next_chars2 = next_chars[j: j + self.batch_size] ## F...:)
for i, one_sample in enumerate(sentences[j: j + self.batch_size]):
for t, char in enumerate(one_sample):
x[i, t, self.char_indices[char]] = 1
y[i, self.char_indices[next_chars2[i]]] = 1
yield (x, y)
# yield self.generate_single_batch(sentences, next_chars)
j += self.batch_size
if j > (len(sentences) - (self.batch_size+1)):
j = random.randint(0, len(sentences) - (self.batch_size+1))
def data_generator_validation(self, sentences, next_chars):
"""
Batch data generator for large dataset not fit completely in memory
# Index j now increase sequentially (validation don't need to shuffle)
:param sentences:
:param next_chars:
:return:
"""
j = 0
# print('Vectorization...')
while True:
# Fix generator :))
x = np.zeros((self.batch_size, self.maxlen, len(self.chars)), dtype=np.bool)
y = np.zeros((self.batch_size, len(self.chars)), dtype=np.bool)
# j = random.randint(0, len(sentences) - (self.batch_size + 1))
next_chars2 = next_chars[j: j + self.batch_size] ## F...:)
for i, one_sample in enumerate(sentences[j: j + self.batch_size]):
for t, char in enumerate(one_sample):
x[i, t, self.char_indices[char]] = 1
y[i, self.char_indices[next_chars2[i]]] = 1
yield (x, y)
# yield self.generate_single_batch(sentences, next_chars)
j += self.batch_size
if j > (len(sentences) - (self.batch_size + 1)):
j = 0
def data_generator_in_memory(self, sentences, next_chars):
"""All data generate for small dataset fit completely in memory"""
x = np.zeros((len(sentences), self.maxlen, len(self.chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(self.chars)), dtype=np.bool)
for i, one_sample in enumerate(sentences):
for t, char in enumerate(one_sample):
x[i, t, self.char_indices[char]] = 1
y[i, self.char_indices[next_chars[i]]] = 1
return x, y
def train(self,
epochs=1,
trained_model=None,
trained_model_name='trained_model_wn'):
"""
Create and train deep model
:param epochs: Specify number of epoch for training.
:param
:
:return: Nothing.
"""
# Start time of training
dt = datetime.datetime.now().strftime('_date_%Y-%m-%d_%H-%M-%S_')
print('Generate training samples ...')
sentences_training, next_chars_training = self.generate_samples(self.text_training)
print('Generate validations samples ...')
sentences_validation, next_chars_validation = self.generate_samples(self.text_validation)
# print(sentences_training[0] + '\t' + next_chars_training[0])
# print(sentences_training[1] + '\t' + next_chars_training[1])
# print(sentences_training[2] + '\t' + next_chars_training[2])
# print(sentences_training[3] + '\t' + next_chars_training[3])
# print(sentences_training[4] + '\t' + next_chars_training[4])
#
# input()
print('Build and compile model ...')
model = None
model_name = None
if trained_model is None:
model, model_name = self.define_model((self.maxlen, len(self.chars)), len(self.chars))
else:
model = trained_model
model_name = trained_model_name
optimizer = RMSprop(lr=0.01) # [0.001, 0.01, 0.02, 0.05, 0.1]
optimizer = Adam(lr=0.001) # Reduce from 0.001 to 0.0001 for model_10
model.compile(optimizer=optimizer,
loss='categorical_crossentropy',
# metrics=['accuracy']
metrics=['accuracy', cross_entropy, perplexity])
print(model_name, ' summary ...')
model.summary()
print(model_name, ' count_params ...')
print(model.count_params())
# input()
print('Set #5 callback ...')
# callback #1 EarlyStopping
# monitor= 'val_loss' or monitor='loss'?
model_early_stopping = EarlyStopping(monitor='loss', min_delta=0.01, patience=5, verbose=1, mode='auto')
# callback #2 ModelCheckpoint
# Create a directory for each training process to keep model checkpoint in .h5 format
dir_name = './model_checkpoint/pdfs/' + model_name + dt + 'epochs_' + str(epochs) + '/'
if not os.path.exists(dir_name):
os.makedirs(dir_name)
file_name = dir_name + model_name + dt + 'epoch_{epoch:02d}_val_loss_{val_loss:.4f}.h5'
model_checkpoint = ModelCheckpoint(file_name, verbose=1)
# callback #3 TensorBoard
dir_name = './logs_tensorboard/pdfs/' + model_name + dt + 'epochs_' + str(epochs) + '/'
if not os.path.exists(dir_name):
os.makedirs(dir_name)
model_tensorboard = TensorBoard(log_dir=dir_name, histogram_freq=0, batch_size=self.batch_size,
write_graph=True, write_grads=False, write_images=True, embeddings_freq=0,
embeddings_layer_names=None, embeddings_metadata=None)
# callback #4 CSVLogger
# Create a directory and an empty csv file within to save mode csv log.
dir_name = './logs_csv/pdfs/' + model_name + dt + 'epochs_' + str(epochs) + '/'
if not os.path.exists(dir_name):
os.makedirs(dir_name)
file_name = dir_name + model_name + dt + '_epochs_' + str(epochs) + '_step_' + str(self.step) + '.csv'
open(file_name, mode='a', newline='').close()
model_csv_logger = CSVLogger(file_name, separator=',', append=False)
# callback #5 LambdaCallback
dir_name = './generated_results/pdfs/' + model_name + dt + 'epochs_' + str(epochs) + '/'
if not os.path.exists(dir_name):
os.makedirs(dir_name)
def on_epoch_end(epoch, logs):
nonlocal model
nonlocal epochs
nonlocal model_name
nonlocal dir_name
print('Sampling model and save results ... ')
self.generate_and_fuzz_new_samples(model=model,
model_name=model_name,
epochs=epochs,
current_epoch=epoch,
dir_name=dir_name
)
generate_and_fuzz_new_samples_callback = LambdaCallback(on_epoch_begin=None,
on_epoch_end=on_epoch_end,
on_batch_begin=None,
on_batch_end=None,
on_train_begin=None,
on_train_end=None
)
if learning_config['dataset_size'] == 'very_small': # very_small
print('Start training on small dataset ...')
x, y = self.data_generator_in_memory(sentences_training, next_chars_training)
model.fit(x, y,
batch_size=self.batch_size,
epochs=epochs,
validation_split=0.2,
shuffle=True,
callbacks=[model_checkpoint,
model_tensorboard,
model_csv_logger,
generate_and_fuzz_new_samples_callback]
)
else:
print('Build training and validation data generators ...')
training_data_generator = self.data_generator(sentences_training, next_chars_training)
validation_data_generator = self.data_generator_validation(sentences_validation, next_chars_validation)
# x, y = next(training_data_generator)
# print(x)
# print('+'*75)
# print(y)
# print('#'*50)
# x, y = next(training_data_generator)
# print(x)
# print('+' * 75)
# print(y)
# print('#' * 50)
# input()
print('Start training on large dataset ...')
model.fit_generator(generator=training_data_generator,
# steps_per_epoch=200,
steps_per_epoch=len(sentences_training) // self.batch_size, # 1000,
validation_data=validation_data_generator,
validation_steps=len(sentences_validation) // (self.batch_size*2), # 100,
# validation_steps=10,
use_multiprocessing=False,
workers=1,
epochs=epochs,
shuffle=True,
callbacks=[model_checkpoint,
model_tensorboard,
model_csv_logger,
generate_and_fuzz_new_samples_callback]
)
# end of train method
# --------------------------------------------------------------------
def generate_and_fuzz_new_samples(self,
model=None,
model_name='model_1',
epochs=1,
current_epoch=1,
dir_name=None):
"""
sampling the model and generate new object
:param model: The model which is training.
:param model_name: Name of model (base on hyperparameters config in deep_model.py file) e.g. [model_1, model_2,
...]
:param epochs: Number of total epochs of training, e.g. 10,20,30,40,50 or 60
:param current_epoch: Number of current epoch
:param dir_name: root directory for this running.
:return: Nothing
"""
# End time of current epoch
dt = datetime.datetime.now().strftime('_date_%Y-%m-%d_%H-%M-%S')
dir_name = dir_name + 'epoch_' + str(current_epoch) + dt + '/'
if not os.path.exists(dir_name):
os.makedirs(dir_name)
# Fuzzing hyper-parameters
diversities = [i*0.10 for i in range(1, 20, 2)]
diversities = [0.2, 0.5, 1.0, 1.2, 1.5, 1.8]
diversities = [1.0] # for sou and for mou
# diversities = [1.5]
generated_obj_total = 30200 # [5, 10, 100, 1000, 3000] {1000-1100 for sou and 3000-3100 for muo}
generated_obj_with_same_prefix = 20 # [1, 5, 10, 20, 40] {10 for sou and 20 for mou}
generated_obj_max_allowed_len = random.randint(450, 550) # Choose max allowed len for object randomly
exclude_from_fuzzing_set = {'s', 't', 'r', 'e', 'a', 'm', 'e', 'n', 'd', 'o', 'b', 'j'} # set(['s', 't', 'r', 'e', 'a', 'm'])
# Learn and fuzz paper hyper-parameters
t_fuzz = 0.90 # For comparision with p_fuzz where p_fuzz is a random number (if p_fuzz > t_fuzz)
p_t = 0.40 # 0.9 and more for format fuzzing; 0.4 and less than 0.4 for data fuzzing. Now data fuzzing.
# End of fuzzing hyper-parameters
testset_objects_list = preprocess.get_list_of_object(self.text_test)
testset_object_gt_maxlen_list = []
for obj in testset_objects_list:
if len(obj) > self.maxlen+len(' endobj'):
testset_object_gt_maxlen_list.append(obj)
print('len filtered test-set: ', len(testset_object_gt_maxlen_list))
generated_total = ''
for diversity in diversities:
generated_total = ''
for q in range(round(generated_obj_total/generated_obj_with_same_prefix)):
obj_index = random.randint(0, len(testset_object_gt_maxlen_list) - 1)
generated_obj_counter = 0
generated_obj_len = 0
generated = ''
stop_condition = False
endobj_attach_manually = False
# print()
print('-- Diversity:', diversity)
obj_prefix = str(testset_object_gt_maxlen_list[obj_index])[0: self.maxlen]
generated += obj_prefix
# prob_vals = '1 ' * self.maxlen
# learnt_grammar = obj_prefix
# print('--- Generating ts_text with seed:\n "' + obj_prefix + '"')
# sys.stdout.write(generated)
if generated.endswith('endobj'):
generated_obj_counter += 1
if generated_obj_counter > generated_obj_with_same_prefix:
stop_condition = True
while not stop_condition:
x_pred = np.zeros((1, self.maxlen, len(self.chars)))
for t, char in enumerate(obj_prefix):
x_pred[0, t, self.char_indices[char]] = 1.
preds = model.predict(x_pred, verbose=0)[0]
next_index, prob, preds2 = self.sample(preds, diversity)
next_char = self.indices_char[next_index]
next_char_for_prefix = next_char
###### Fuzzing section we don't need it yet!
if next_char not in exclude_from_fuzzing_set:
p_fuzz = random.random()
if p_fuzz > t_fuzz and preds2[next_index] < p_t:
next_index = np.argmin(preds2)
print('((Fuzz!))')
next_char = self.indices_char[next_index] # next_char updated.
###### End of fuzzing section
obj_prefix = obj_prefix[1:] + next_char # next_char_for_prefix
generated += next_char # next_char_for_prefix #
generated_obj_len += 1
if generated.endswith('endobj'):
generated_obj_counter += 1
generated_obj_len = 0
elif (generated.endswith('endobj') is False) and \
(generated_obj_len > generated_obj_max_allowed_len):
# Attach '\nendobj\n' manually, and reset obj_prefix
generated += '\nendobj\n'
generated_obj_counter += 1
generated_obj_len = 0
endobj_attach_manually = True
if generated_obj_counter >= generated_obj_with_same_prefix: # Fix: Change > to >= (13970315)
stop_condition = True
elif endobj_attach_manually:
# Reset prefix:
# Here we need to modify obj_prefix because we manually change the generated_obj!
# Below we add this new repair:
# obj_prefix = obj_prefix[len('\nendobj\n'):] + '\nendobj\n'
# Instead of modify obj_prefix we can reset prefix if we found that 'endobj' dose not generate
# automatically. It seems to be better option, so we do this:
obj_index = random.randint(0, len(testset_object_gt_maxlen_list) - 1)
obj_prefix = str(testset_object_gt_maxlen_list[obj_index])[0: self.maxlen]
generated += obj_prefix
endobj_attach_manually = False
# sys.stdout.write(next_char)
# sys.stdout.flush()
# print()
generated_total += generated + '\n'
# save generated_result to file inside program
file_name = model_name \
+ '_diversity_' + repr(diversity) \
+ '_epochs_' + repr(epochs) \
+ '_step_' + repr(self.step) \
+ '.txt'
preprocess.save_to_file(dir_name + file_name, generated_total)
# preprocess.save_to_file(dir_name + file_name + 'probabilities.txt', prob_vals)
# preprocess.save_to_file(dir_name + file_name + 'learntgrammar.txt',learnt_grammar)
print('Diversity %s save to file successfully.' % diversity)
print('End of generation method.')
# print('Starting new epoch ...')
return generated_total
# Lower temperature will cause the model to make more likely,
# but also more boring and conservative predictions.
def sample(self, preds, temperature=1.0):
"""
Helper function to sample an index from a probability array
:param preds:
:param temperature:
:return:
"""
# print('raw predictions = ', preds)
preds = np.asarray(preds).astype('float64')
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
# Sampling with numpy functions:
probas = np.random.multinomial(1, preds, 1)
# print()
# print('sanitize predictions = ', preds)
return np.argmax(probas), probas, preds
def no_sample(self):
pass
def sample_space(self):
pass
def save_model_plot(self, model, epochs):
"""
Save the model architecture plot.
:param model:
:param epochs:
:return:
"""
dt = datetime.datetime.now().strftime('_%Y%m%d_%H%M%S_')
# plot the model
plot_model(model, to_file='./modelpic/date_' + dt + 'epochs_' + str(epochs) + '.png',
show_shapes=True, show_layer_names=True)
def load_model_and_generate(self, model_name='model_7', epochs=38):
dt = datetime.datetime.now().strftime('_date_%Y-%m-%d_%H-%M-%S')
dir_name = './generated_results/pdfs/' + model_name + dt + 'epochs_' + str(epochs) + '/'
if not os.path.exists(dir_name):
os.makedirs(dir_name)
model = load_model('./model_checkpoint/best_models/'
'model_7_date_2018-05-14_21-44-21_epoch_38_val_loss_0.3300.h5',
compile=False)
optimizer = Adam(lr=0.001) # Reduce from 0.001 to 0.0001 just for model_10
model.compile(optimizer=optimizer,
loss='categorical_crossentropy',
# metrics=['accuracy']
metrics=['accuracy'])
seq = self.generate_and_fuzz_new_samples(model=model,
model_name=model_name,
epochs=epochs,
current_epoch=38,
dir_name=dir_name)
list_of_obj = preprocess.get_list_of_object(seq=seq, is_sort=False)
return list_of_obj
def get_model_summary(self):
print('Get model summary ...')
model, model_name = self.define_model((self.maxlen, len(self.chars)), len(self.chars))
print(model_name, ' summary ...')
model.summary()
print(model_name, ' count_params ...')
print(model.count_params())
def main(argv):
""" The main function to call train() method"""
epochs = 100
fff = FileFormatFuzzer(maxlen=50, step=3, batch_size=256)
# trained_model_dir = './model_checkpoint/best_models/'
# trained_model_file_name = 'model_7_date_2018-05-14_21-44-21_epoch_65_val_loss_0.3335.h5'
# trained_model_path = trained_model_dir + trained_model_file_name
# trained_model = load_model(trained_model_path, compile=False)
# Train deep model from first or continue training for previous trained model.
# Trained model pass as argument.
# fff.train(epochs=epochs,
# trained_model=trained_model,
# trained_model_name='model_7-1'
# )
# fff.get_model_summary()
list_of_obj = fff.load_model_and_generate()
print('Len list_of_obj', len(list_of_obj))
dt = datetime.datetime.now().strftime('_%Y_%m_%d__%H_%M_%S_')
print('Generation complete successfully', dt)
if __name__ == "__main__":
main(sys.argv)