-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstreamlit_app.py
889 lines (720 loc) · 31.3 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
# In this program we will apply various ML algorithms to the built in datasets in scikit-learn and some datasets from kaggle
# Importing required Libraries
# Importing Numpy
import numpy as np
# To read csv file
import pandas as pd
# Importing datasets from sklearn
from sklearn import datasets
# For splitting between training and testing
from sklearn.model_selection import train_test_split
# Importing Algorithm for Simple Vector Machine
from sklearn.svm import SVC, SVR
# Importing Knn algorithm
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
# Importing Decision Tree algorithm
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
# Importing Random Forest Classifer
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
# Importing Naive Bayes algorithm
from sklearn.naive_bayes import GaussianNB
# Importing Linear and Logistic Regression
from sklearn.linear_model import LinearRegression, LogisticRegression
# Importing accuracy score and mean_squared_error
from sklearn.metrics import mean_squared_error, accuracy_score, mean_absolute_error
# Importing PCA for dimension reduction
from sklearn.decomposition import PCA
# For Plotting
import matplotlib.pyplot as plt
import seaborn as sns
# For model deployment
import streamlit as st
# Importing Label Encoder
# For converting string to int
from sklearn.preprocessing import LabelEncoder
# To Disable Warnings
st.set_option("deprecation.showPyplotGlobalUse", False)
import warnings
warnings.filterwarnings("ignore")
# Now we need to load the builtin dataset
# For the other dataset we will read the csv file from the dataset folder
# This is done using the load_dataset_name function
def load_dataset(Data):
if Data == "Iris":
return datasets.load_iris()
elif Data == "Wine":
return datasets.load_wine()
elif Data == "Breast Cancer":
return datasets.load_breast_cancer()
elif Data == "Diabetes":
return datasets.load_diabetes()
elif Data == "Digits":
return datasets.load_digits()
elif Data == "Salary":
return pd.read_csv("Dataset/Salary_dataset.csv")
elif Data == "Naive Bayes Classification":
return pd.read_csv("Dataset/Naive-Bayes-Classification-Data.csv")
elif Data == "Heart Disease Classification":
return pd.read_csv("Dataset/Updated_heart_prediction.csv")
elif Data == "Titanic":
return pd.read_csv("Dataset/Preprocessed Titanic Dataset.csv")
else:
return pd.read_csv("Dataset/car_evaluation.csv")
# Now after this we need to split between input and output
# Defining Function for Input and Output
def Input_output(data, data_name):
if data_name == "Salary":
X, Y = data["YearsExperience"].to_numpy().reshape(-1, 1), data[
"Salary"
].to_numpy().reshape(-1, 1)
elif data_name == "Naive Bayes Classification":
X, Y = data.drop("diabetes", axis=1), data["diabetes"]
elif data_name == "Heart Disease Classification":
X, Y = data.drop("output", axis=1), data["output"]
elif data_name == "Titanic":
X, Y = (
data.drop(
columns=["survived", "home.dest", "last_name", "first_name", "title"],
axis=1,
),
data["survived"],
)
elif data_name == "Car Evaluation":
df = data
# For converting string columns to numeric values
le = LabelEncoder()
# Function to convert string values to numeric values
func = lambda i: le.fit(df[i]).transform(df[i])
for i in df.columns:
df[i] = func(i)
X, Y = df.drop(["unacc"], axis=1), df["unacc"]
else:
# We use data.data as we need to copy data to X which is Input
X = data.data
# Since this is built in dataset we can directly load output or target class by using data.target function
Y = data.target
return X, Y
# Adding Parameters so that we can select from various parameters for classifier
def add_parameter_classifier_general(algorithm):
# Declaring a dictionary for storing parameters
params = dict()
# Deciding parameters based on algorithm
# Adding paramters for SVM
if algorithm == "SVM":
# Adding regularization parameter from range 0.01 to 10.0
c_regular = st.sidebar.slider("C (Regularization)", 0.01, 10.0)
# Kernel is the arguments in the ML model
# Polynomial ,Linear, Sigmoid and Radial Basis Function are types of kernals which we can add
kernel_custom = st.sidebar.selectbox(
"Kernel", ("linear", "poly ", "rbf", "sigmoid")
)
# Adding in dictionary
params["C"] = c_regular
params["kernel"] = kernel_custom
# Adding Parameters for KNN
elif algorithm == "KNN":
# Adding number of Neighbour in Classifier
k_n = st.sidebar.slider("Number of Neighbors (K)", 1, 20, key="k_n_slider")
# Adding in dictionary
params["K"] = k_n
# Adding weights
weights_custom = st.sidebar.selectbox("Weights", ("uniform", "distance"))
# Adding to dictionary
params["weights"] = weights_custom
# Adding Parameters for Naive Bayes
# It doesn't have any paramter
elif algorithm == "Naive Bayes":
st.sidebar.info(
"This is a simple Algorithm. It doesn't have Parameters for Hyper-tuning."
)
# Adding Parameters for Decision Tree
elif algorithm == "Decision Tree":
# Taking max_depth
max_depth = st.sidebar.slider("Max Depth", 2, 17)
# Adding criterion
# mse is for regression- It is used in DecisionTreeRegressor
# mse will give error in classifier so it is removed
criterion = st.sidebar.selectbox("Criterion", ("gini", "entropy"))
# Adding splitter
splitter = st.sidebar.selectbox("Splitter", ("best", "random"))
# Taking random state
# Adding to dictionary
params["max_depth"] = max_depth
params["criterion"] = criterion
params["splitter"] = splitter
# Exception Handling using try except block
# Because we are sending this input in algorithm model it will show error before any input is entered
# For this we will do a default random state till the user enters any state and after that it will be updated
try:
random = st.sidebar.text_input("Enter Random State")
params["random_state"] = int(random)
except:
params["random_state"] = 4567
# Adding Parameters for Random Forest
elif algorithm == "Random Forest":
# Taking max_depth
max_depth = st.sidebar.slider("Max Depth", 2, 17)
# Adding number of estimators
n_estimators = st.sidebar.slider("Number of Estimators", 1, 90)
# Adding criterion
# mse is for regression- It is used in RandomForestRegressor
# mse will give error in classifier so it is removed
criterion = st.sidebar.selectbox("Criterion", ("gini", "entropy", "log_loss"))
# Adding to dictionary
params["max_depth"] = max_depth
params["n_estimators"] = n_estimators
params["criterion"] = criterion
# Exception Handling using try except block
# Because we are sending this input in algorithm model it will show error before any input is entered
# For this we will do a default random state till the user enters any state and after that it will be updated
try:
random = st.sidebar.text_input("Enter Random State")
params["random_state"] = int(random)
except:
params["random_state"] = 4567
# Adding Parameters for Logistic Regression
else:
# Adding regularization parameter from range 0.01 to 10.0
c_regular = st.sidebar.slider("C (Regularization)", 0.01, 10.0)
params["C"] = c_regular
# Taking fit_intercept
fit_intercept = st.sidebar.selectbox("Fit Intercept", ("True", "False"))
params["fit_intercept"] = bool(fit_intercept)
# Taking Penalty only l2 and None is supported
penalty = st.sidebar.selectbox("Penalty", ("l2", None))
params["penalty"] = penalty
# Taking n_jobs
n_jobs = st.sidebar.selectbox("Number of Jobs", (None, -1))
params["n_jobs"] = n_jobs
return params
# Adding Parameters so that we can select from various parameters for regressor
def add_parameter_regressor(algorithm):
# Declaring a dictionary for storing parameters
params = dict()
# Deciding parameters based on algorithm
# Adding Parameters for Decision Tree
if algorithm == "Decision Tree":
# Taking max_depth
max_depth = st.sidebar.slider("Max Depth", 2, 17)
# Adding criterion
# mse is for regression- It is used in DecisionTreeRegressor
criterion = st.sidebar.selectbox(
"Criterion", ("absolute_error", "squared_error", "poisson", "friedman_mse")
)
# Adding splitter
splitter = st.sidebar.selectbox("Splitter", ("best", "random"))
# Taking random state
# Adding to dictionary
params["max_depth"] = max_depth
params["criterion"] = criterion
params["splitter"] = splitter
# Exception Handling using try except block
# Because we are sending this input in algorithm model it will show error before any input is entered
# For this we will do a default random state till the user enters any state and after that it will be updated
try:
random = st.sidebar.text_input("Enter Random State")
params["random_state"] = int(random)
except:
params["random_state"] = 4567
# Adding Parameters for Linear Regression
elif algorithm == "Linear Regression":
# Taking fit_intercept
fit_intercept = st.sidebar.selectbox("Fit Intercept", ("True", "False"))
params["fit_intercept"] = bool(fit_intercept)
# Normalize does not work in linear regression
# Taking n_jobs
n_jobs = st.sidebar.selectbox("Number of Jobs", (None, -1))
params["n_jobs"] = n_jobs
# Adding Parameters for Random Forest
else:
# Taking max_depth
max_depth = st.sidebar.slider("Max Depth", 2, 17)
# Adding number of estimators
n_estimators = st.sidebar.slider("Number of Estimators", 1, 90)
# Adding criterion
# mse is for regression- It is used in RandomForestRegressor
criterion = st.sidebar.selectbox(
"Criterion", ("absolute_error", "squared_error", "poisson", "friedman_mse")
)
# Adding to dictionary
params["max_depth"] = max_depth
params["n_estimators"] = n_estimators
params["criterion"] = criterion
# Exception Handling using try except block
# Because we are sending this input in algorithm model it will show error before any input is entered
# For this we will do a default random state till the user enters any state and after that it will be updated
try:
random = st.sidebar.text_input("Enter Random State")
params["random_state"] = int(random)
except:
params["random_state"] = 4567
return params
# Now we will build ML Model for this dataset and calculate accuracy for that for classifier
def model_classifier(algorithm, params):
if algorithm == "KNN":
return KNeighborsClassifier(n_neighbors=params["K"], weights=params["weights"])
elif algorithm == "SVM":
return SVC(C=params["C"], kernel=params["kernel"])
elif algorithm == "Decision Tree":
return DecisionTreeClassifier(
criterion=params["criterion"],
splitter=params["splitter"],
random_state=params["random_state"],
)
elif algorithm == "Naive Bayes":
return GaussianNB()
elif algorithm == "Random Forest":
return RandomForestClassifier(
n_estimators=params["n_estimators"],
max_depth=params["max_depth"],
criterion=params["criterion"],
random_state=params["random_state"],
)
elif algorithm == "Linear Regression":
return LinearRegression(
fit_intercept=params["fit_intercept"], n_jobs=params["n_jobs"]
)
else:
return LogisticRegression(
fit_intercept=params["fit_intercept"],
penalty=params["penalty"],
C=params["C"],
n_jobs=params["n_jobs"],
)
# Now we will build ML Model for this dataset and calculate accuracy for that for regressor
def model_regressor(algorithm, params):
if algorithm == "KNN":
return KNeighborsRegressor(n_neighbors=params["K"], weights=params["weights"])
elif algorithm == "SVM":
return SVR(C=params["C"], kernel=params["kernel"])
elif algorithm == "Decision Tree":
return DecisionTreeRegressor(
criterion=params["criterion"],
splitter=params["splitter"],
random_state=params["random_state"],
)
elif algorithm == "Random Forest":
return RandomForestRegressor(
n_estimators=params["n_estimators"],
max_depth=params["max_depth"],
criterion=params["criterion"],
random_state=params["random_state"],
)
else:
return LinearRegression(
fit_intercept=params["fit_intercept"], n_jobs=params["n_jobs"]
)
# Now we will write the dataset information
# Since diabetes is a regression dataset, it does not have classes
def info(data_name, algorithm, algorithm_type, data, X, Y):
if data_name not in [
"Diabetes",
"Salary",
"Naive Bayes Classification",
"Car Evaluation",
"Heart Disease Classification",
"Titanic",
]:
st.write(f"## Classification {data_name} Dataset")
st.write(f'Algorithm is : {algorithm + " " + algorithm_type}')
# Printing shape of data
st.write("Shape of Dataset is: ", X.shape)
st.write("Number of classes: ", len(np.unique(Y)))
# Making a dataframe to store target name and value
df = pd.DataFrame(
{"Target Value": list(np.unique(Y)), "Target Name": data.target_names}
)
# Display the DataFrame without index labels
st.write("Values and Name of Classes")
# Display the DataFrame as a Markdown table
# To successfully run this we need to install tabulate
st.markdown(df.to_markdown(index=False), unsafe_allow_html=True)
st.write("\n")
elif data_name == "Diabetes":
st.write(f"## Regression {data_name} Dataset")
st.write(f'Algorithm is : {algorithm + " " + algorithm_type}')
# Printing shape of data
st.write("Shape of Dataset is: ", X.shape)
elif data_name == "Salary":
st.write(f"## Regression {data_name} Dataset")
st.write(f'Algorithm is : {algorithm + " " + algorithm_type}')
# Printing shape of data
st.write("Shape of Dataset is: ", X.shape)
elif data_name == "Naive Bayes Classification":
st.write(f"## Classification {data_name} Dataset")
st.write(f'Algorithm is : {algorithm + " " + algorithm_type}')
# Printing shape of data
st.write("Shape of Dataset is: ", X.shape)
st.write("Number of classes: ", len(np.unique(Y)))
# Making a dataframe to store target name and value
df = pd.DataFrame(
{
"Target Value": list(np.unique(Y)),
"Target Name": ["Not Diabetic", "Diabetic"],
}
)
# Display the DataFrame without index labels
st.write("Values and Name of Classes")
# Display the DataFrame as a Markdown table
# To successfully run this we need to install tabulate
st.markdown(df.to_markdown(index=False), unsafe_allow_html=True)
st.write("\n")
elif data_name == "Heart Disease Classification":
st.write(f"## Classification {data_name} Dataset")
st.write(f'Algorithm is : {algorithm + " " + algorithm_type}')
# Printing shape of data
st.write("Shape of Dataset is: ", X.shape)
st.write("Number of classes: ", len(np.unique(Y)))
# Making a dataframe to store target name and value
df = pd.DataFrame(
{
"Target Value": list(np.unique(Y)),
"Target Name": [
"Less Chance Of Heart Attack",
"High Chance Of Heart Attack",
],
}
)
# Display the DataFrame without index labels
st.write("Values and Name of Classes")
# Display the DataFrame as a Markdown table
# To successfully run this we need to install tabulate
st.markdown(df.to_markdown(index=False), unsafe_allow_html=True)
st.write("\n")
elif data_name == "Titanic":
st.write(f"## Classification {data_name} Dataset")
st.write(f'Algorithm is : {algorithm + " " + algorithm_type}')
# Printing shape of data
st.write("Shape of Dataset is: ", X.shape)
st.write("Number of classes: ", len(np.unique(Y)))
# Making a dataframe to store target name and value
df = pd.DataFrame(
{
"Target Value": list(np.unique(Y)),
"Target Name": ["Not Survived", "Survived"],
}
)
# Display the DataFrame without index labels
st.write("Values and Name of Classes")
# Display the DataFrame as a Markdown table
# To successfully run this we need to install tabulate
st.markdown(df.to_markdown(index=False), unsafe_allow_html=True)
st.write("\n")
else:
st.write(f"## Classification {data_name} Dataset")
st.write(f"Algorithm is : {algorithm}")
# Printing shape of data
st.write("Shape of Dataset is: ", X.shape)
st.write("Number of classes: ", len(np.unique(Y)))
# Making a dataframe to store target name and value
df = pd.DataFrame(
{
"Target Value": list(np.unique(Y)),
"Target Name": [
"Unacceptable",
"Acceptable",
"Good Condition",
"Very Good Condition",
],
}
)
# Display the DataFrame without index labels
st.write("Values and Name of Classes")
# Display the DataFrame as a Markdown table
# To successfully run this we need to install tabulate
st.markdown(df.to_markdown(index=False), unsafe_allow_html=True)
st.write("\n")
# Now while plotting we have to show target variables for datasets
# Now since diabetes is regression dataset it dosen't have target variables
# So we have to apply condition and plot the graph according to the dataset
# Seaborn is used as matplotlib does not display all label names
def choice_classifier(data, data_name, X, Y):
# Plotting Regression Plot for dataset diabetes
# Since this is a regression dataset we show regression line as well
if data_name == "Diabetes":
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap="viridis", alpha=0.8)
plt.title("Scatter Classification Plot of Dataset")
plt.colorbar()
# Plotting for digits
# Since this dataset has many classes/target values we can plot it using seaborn
# Also viridis will be ignored here and it will plot by default according to its own settings
# But we can set Color palette according to our requirements
# We need not to give data argument else it gives error
# Hue paramter is given to show target variables
elif data_name == "Digits":
colors = [
"purple",
"green",
"yellow",
"red",
"black",
"cyan",
"pink",
"magenta",
"grey",
"teal",
]
sns.scatterplot(
x=X[:, 0],
y=X[:, 1],
hue=Y,
palette=sns.color_palette(colors),
cmap="viridis",
alpha=0.4,
)
# Giving legend
# If we try to show the class target name it will show in different color than the ones that are plotted
plt.legend(data.target_names, shadow=True)
# Giving Title
plt.title("Scatter Classification Plot of Dataset With Target Classes")
elif data_name == "Salary":
sns.scatterplot(x=data["YearsExperience"], y=data["Salary"], data=data)
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.title("Scatter Classification Plot of Dataset")
elif data_name == "Naive Bayes Classification":
colors = ["purple", "green"]
sns.scatterplot(
x=data["glucose"],
y=data["bloodpressure"],
data=data,
hue=Y,
palette=sns.color_palette(colors),
alpha=0.4,
)
plt.legend(shadow=True)
plt.xlabel("Glucose")
plt.ylabel("Blood Pressure")
plt.title("Scatter Classification Plot of Dataset With Target Classes")
# We cannot give data directly we have to specify the values for x and y
else:
colors = ["purple", "green", "yellow", "red"]
sns.scatterplot(
x=X[:, 0], y=X[:, 1], hue=Y, palette=sns.color_palette(colors), alpha=0.4
)
plt.legend(shadow=True)
plt.title("Scatter Classification Plot of Dataset With Target Classes")
# Now while plotting we have to show original value for datasets
# Now since diabetes is regression dataset it dosen't have target variables
# So we have to apply condition and plot the graph according to the dataset
# Seaborn is used as matplotlib does not display all label names
# We show the regression line and the original variables
def choice_regressor(X, x_test, predict, data, data_name, Y, fig):
# Plotting Regression Plot for dataset diabetes
# Since this is a regression dataset we show regression line as well
if data_name == "Diabetes":
plt.scatter(X[:, 0], Y, c=Y, cmap="viridis", alpha=0.4)
plt.plot(x_test, predict, color="red")
plt.title("Scatter Regression Plot of Dataset")
plt.legend(["Actual Values", "Best Line or General formula"])
plt.colorbar()
# Plotting for digits
# Since this dataset has many classes/target values we can plot it using seaborn
# Also viridis will be ignored here and it will plot by default according to its own settings
# But we can set Color palette according to our requirements
# We need not to give data argument else it gives error
# Hue paramter is given to show target variables
elif data_name == "Digits":
colors = [
"purple",
"green",
"yellow",
"red",
"black",
"cyan",
"pink",
"magenta",
"grey",
"teal",
]
sns.scatterplot(
x=X[:, 0],
y=X[:, 1],
hue=Y,
palette=sns.color_palette(colors),
cmap="viridis",
alpha=0.4,
)
plt.plot(x_test, predict, color="red")
# Giving legend
# If we try to show the class target name it will show in different color than the ones that are plotted
plt.legend(data.target_names, shadow=True)
# Giving Title
plt.title("Scatter Plot of Dataset With Target Classes")
elif data_name == "Salary":
sns.scatterplot(x=data["YearsExperience"], y=data["Salary"], data=data)
plt.plot(x_test, predict, color="red")
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.legend(["Actual Values", "Best Line or General formula"])
plt.title("Scatter Regression Plot of Dataset")
# We cannot give data directly we have to specify the values for x and y
else:
plt.scatter(X[:, 0], X[:, 1], cmap="viridis", c=Y, alpha=0.4)
plt.plot(x_test, predict, color="red")
plt.legend(["Actual Values", "Best Line or General formula"])
plt.colorbar()
plt.title("Scatter Regression Plot of Dataset With Target Classes")
return fig
# This prints the information about the dataset
# It also builds the model according to the dataset being classification or regression dataset
def data_model_description(algorithm, algorithm_type, data_name, data, X, Y):
# Calling function to print Dataset Information
info(data_name, algorithm, algorithm_type, data, X, Y)
# Calling Function based on regressor and classifier
# Here since the parameters for regressor and classifier are same for some algorithm we can directly use this
# Because of this here except for this three algorithm we do not need to take parameters separately
if (algorithm_type == "Regressor") and (
algorithm == "Decision Tree"
or algorithm == "Random Forest"
or algorithm_type == "Linear Regression"
):
params = add_parameter_regressor(algorithm)
else:
params = add_parameter_classifier_general(algorithm)
# Now selecting classifier or regressor
# Calling Function based on regressor and classifier
if algorithm_type == "Regressor":
algo_model = model_regressor(algorithm, params)
else:
algo_model = model_classifier(algorithm, params)
# Now splitting into Testing and Training data
# It will split into 80 % training data and 20 % Testing data
x_train, x_test, y_train, y_test = train_test_split(X, Y, train_size=0.8)
# Training algorithm
algo_model.fit(x_train, y_train)
# Plotting
fig = plt.figure()
# Now we will find the predicted values
predict = algo_model.predict(x_test)
X = pca_plot(data_name, X)
if algorithm_type == "Regressor":
fig = choice_regressor(X, x_test, predict, data, data_name, Y, fig)
else:
# Calling Function
fig = choice_classifier(data, data_name, X, Y)
if data_name != "Salary" and data_name != "Naive Bayes Classification":
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
# Since we have done pca in naive bayes classification data for plotting regression plot
if data_name == "Naive Bayes Classification" and algorithm_type == "Regressor":
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
st.pyplot(fig)
# Finding Accuracy
# Evaluating/Testing the model
if algorithm != "Linear Regression" and algorithm_type != "Regressor":
# For all algorithm we will find accuracy
st.write("Training Accuracy is:", algo_model.score(x_train, y_train) * 100)
st.write("Testing Accuracy is:", accuracy_score(y_test, predict) * 100)
else:
# Checking for Error
# Error is less as accuracy is more
# For linear regression we will find error
st.write("Mean Squared error is:", mean_squared_error(y_test, predict))
st.write("Mean Absolute error is:", mean_absolute_error(y_test, predict))
# Doing PCA(Principal Component Analysis) on the dataset and then plotting it
def pca_plot(data_name, X):
# Plotting Dataset
# Since there are many dimensions, first we will do Principle Component analysis to do dimension reduction and then plot
pca = PCA(2)
# Salary and Naive bayes classification data does not need pca
if data_name != "Salary":
X = pca.fit_transform(X)
return X
# Main Function
def main():
# Giving Title
st.title("HyperTuneML Platform")
# Giving Title
st.write("### ML Algorithms on Inbuilt and Kaggle Datasets")
# Now we are making a select box for dataset
data_name = st.sidebar.selectbox(
"Select Dataset",
(
"Iris",
"Breast Cancer",
"Wine",
"Diabetes",
"Digits",
"Salary",
"Naive Bayes Classification",
"Car Evaluation",
"Heart Disease Classification",
"Titanic",
),
)
# The Next is selecting algorithm
# We will display this in the sidebar
algorithm = st.sidebar.selectbox(
"Select Supervised Learning Algorithm",
(
"KNN",
"SVM",
"Decision Tree",
"Naive Bayes",
"Random Forest",
"Linear Regression",
"Logistic Regression",
),
)
# The Next is selecting regressor or classifier
# We will display this in the sidebar
if (
algorithm != "Linear Regression"
and algorithm != "Logistic Regression"
and algorithm != "Naive Bayes"
):
algorithm_type = st.sidebar.selectbox(
"Select Algorithm Type", ("Classifier", "Regressor")
)
else:
st.sidebar.write(
f"In {algorithm} Classifier and Regressor dosen't exist separately"
)
if algorithm == "Linear Regression":
algorithm_type = "Regressor"
st.sidebar.write("{} only does Regression".format(algorithm))
else:
algorithm_type = "Classifier"
st.sidebar.write(f"{algorithm} only does Classification")
# Now we need to call function to load the dataset
data = load_dataset(data_name)
# Calling Function to get Input and Output
X, Y = Input_output(data, data_name)
data_model_description(algorithm, algorithm_type, data_name, data, X, Y)
# Function to include background image and opacity
def display_background_image(url, opacity):
"""
Displays a background image with a specified opacity on the web app using CSS.
Args:
- url (str): URL of the background image.
- opacity (float): Opacity level of the background image.
"""
# Set background image using HTML and CSS
st.markdown(
f"""
<style>
body {{
background: url('{url}') no-repeat center center fixed;
background-size: cover;
opacity: {opacity};
}}
</style>
""",
unsafe_allow_html=True,
)
# Starting Execution of the Program
if __name__ == "__main__":
# Setting the page title
# This title will only be visible when running the app locally.
# In the deployed app, the title will be displayed as "Title - Streamlit," where "Title" is the one we provide.
# If we don't set the title, it will default to "Streamlit"
st.set_page_config(page_title="HyperTuneML Platform")
# Call function to display the background image with opacity
display_background_image(
"https://i.morioh.com/52c215bc5f.png",
0.8,
)
# Calling Main Function
main()