-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathworker.js
130 lines (115 loc) · 4.38 KB
/
worker.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
importScripts(
"https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/dist/tf.min.js"
);
importScripts("https://cdn.jsdelivr.net/npm/@magenta/[email protected]/es6/core.js");
importScripts(
"https://cdn.jsdelivr.net/npm/@magenta/[email protected]/es6/music_vae.js"
);
importScripts(
"https://cdn.jsdelivr.net/npm/@magenta/[email protected]/es6/music_rnn.js"
);
const Twinkle = {
notes: [
{ pitch: 60, quantizedStartStep: 0, quantizedEndStep: 2 },
{ pitch: 60, quantizedStartStep: 2, quantizedEndStep: 4 },
{ pitch: 67, quantizedStartStep: 4, quantizedEndStep: 6 },
{ pitch: 67, quantizedStartStep: 6, quantizedEndStep: 8 },
{ pitch: 69, quantizedStartStep: 8, quantizedEndStep: 10 },
{ pitch: 69, quantizedStartStep: 10, quantizedEndStep: 12 },
{ pitch: 67, quantizedStartStep: 12, quantizedEndStep: 16 },
{ pitch: 65, quantizedStartStep: 16, quantizedEndStep: 18 },
{ pitch: 65, quantizedStartStep: 18, quantizedEndStep: 20 },
{ pitch: 64, quantizedStartStep: 20, quantizedEndStep: 22 },
{ pitch: 64, quantizedStartStep: 22, quantizedEndStep: 24 },
{ pitch: 62, quantizedStartStep: 24, quantizedEndStep: 26 },
{ pitch: 62, quantizedStartStep: 26, quantizedEndStep: 28 },
{ pitch: 60, quantizedStartStep: 28, quantizedEndStep: 32 },
],
quantizationInfo: { stepsPerQuarter: 4 },
tempos: [{ time: 0, qpm: 120 }],
totalQuantizedSteps: 32,
};
const CHECKPOINTS_DIR =
"https://storage.googleapis.com/magentadata/js/checkpoints";
const urls = {
melodyChords: `${CHECKPOINTS_DIR}/music_vae/mel_chords`,
twoBarSmall: `${CHECKPOINTS_DIR}/music_vae/mel_2bar_small`,
fourBarSmall: `${CHECKPOINTS_DIR}/music_vae/mel_4bar_small_q2`,
chordRNN: `${CHECKPOINTS_DIR}/music_rnn/chord_pitches_improv`,
};
const mrnn = new music_rnn.MusicRNN(urls.chordRNN);
const mvae = new music_vae.MusicVAE(urls.twoBarSmall);
const NUM_INSPIRATIONAL_MELODIES = 4;
const NUM_INTERPOLATIONS = 5;
let startedInitializing = false;
// Main script asks for work.
self.onmessage = async ({ data }) => {
if (!startedInitializing) {
startedInitializing = true;
await mvae.initialize();
await mrnn.initialize();
postMessage({ msg: "init" });
if (data.msg === "init") {
return;
}
}
if (mrnn.isInitialized() && data.msg === "continue") {
const { id } = data;
// const chordProgression = ["C", "Am", "F", "G", "C", "F", "G", "C"];
// const chordProgression = ["C", "C", "F", "F"];
const chordProgression = ["C", "F"];
const result = await mrnn.continueSequence(
Twinkle,
32,
1.0,
chordProgression
);
postMessage({ id, msg: "continue", result });
}
if (mvae.isInitialized() && data.msg === "interpolate") {
const { left, right, id } = data;
const result = await mvae.interpolate(
[left, right],
NUM_INTERPOLATIONS
// null,
// {
// chordProgression: ["C", "C", "F", "F"],
// }
);
postMessage({ id, msg: "interpolate", result });
}
if (mvae.isInitialized() && data.msg === "sample") {
const scale = 4;
const { currentMelody, inspirationalMelodies } = data;
const [nowTensor, destTensors] = await Promise.all([
mvae.encode([currentMelody]),
mvae.encode(inspirationalMelodies),
]);
let tensors = tf
.stack(Array(NUM_INSPIRATIONAL_MELODIES).fill(nowTensor))
.reshape([NUM_INSPIRATIONAL_MELODIES, 256]);
const diffTensors = destTensors.sub(tensors);
const norms = tf
.stack(Array(256).fill(diffTensors.norm(undefined, 1)), 1)
.reshape([4, 256]);
tensors = tensors.add(diffTensors.div(norms).mul(tf.scalar(scale)));
const interpolatedMelodies = await mvae.decode(tensors);
postMessage({ msg: "sample", interpolatedMelodies });
}
};