-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplmodule_data.py
132 lines (113 loc) · 5.6 KB
/
plmodule_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# File : data_loader.py
# Author : Jing Mai <[email protected]>
# Date : 05.19.2022
# Last Modified Date: 05.19.2022
# Last Modified By : Jing Mai <[email protected]>
from pytorch_lightning import LightningDataModule
from data.sparse_molecular_dataset import SparseMolecularDataset
import torch
from torch_utils import label2onehot, DictlikeDataset
from torch.utils.data import DataLoader
from mol_utils import MolecularMetrics
import numpy as np
def gen_data_dict(data:SparseMolecularDataset, idx):
data_dict = {
"mols": data.data[idx],
"smlie": data.smiles[idx],
"S": data.data_S[idx],
"A": torch.from_numpy(data.data_A[idx]).long(),
"X": torch.from_numpy(data.data_X[idx]).long(),
"D": data.data_D[idx],
"F": data.data_F[idx],
"Le": data.data_Le[idx],
"Lv": data.data_Lv[idx],
}
data_dict["A_onehot"] =label2onehot(data_dict["A"], data.bond_num_types)
data_dict["X_onehot"] = label2onehot(data_dict["X"], data.atom_num_types)
return data_dict
def all_scores(mols, data, norm=False, reconstruction=False):
m0 = {k: list(filter(lambda e: e is not None, v)) for k, v in {
'NP': MolecularMetrics.natural_product_scores(mols, norm=norm),
'QED': MolecularMetrics.quantitative_estimation_druglikeness_scores(mols),
'Solute': MolecularMetrics.water_octanol_partition_coefficient_scores(mols, norm=norm),
'SA': MolecularMetrics.synthetic_accessibility_score_scores(mols, norm=norm),
'diverse': MolecularMetrics.diversity_scores(mols, data),
'drugcand': MolecularMetrics.drugcandidate_scores(mols, data)}.items()}
m1 = {'valid': MolecularMetrics.valid_total_score(mols) * 100,
'unique': MolecularMetrics.unique_total_score(mols) * 100,
'novel': MolecularMetrics.novel_total_score(mols, data) * 100}
return m0, m1
class SparseMolecularDataModule(LightningDataModule):
def __init__(self, data: SparseMolecularDataset, batch_size: int, num_workers: int,
metric: str,
shuffle: bool = True,
*args, **kwargs):
super(SparseMolecularDataModule, self).__init__()
self.save_hyperparameters(ignore=['data'])
self.data = data
self.dims = (len(data), data.vertexes, data.atom_num_types, data.bond_num_types)
def __len__(self):
""" Return number of samples in the dataset. """
return self.dims[0]
@property
def vertexes(self):
return self.dims[1]
@property
def atom_num_types(self):
return self.dims[2]
@property
def bond_num_types(self):
""" Return number of bond types in the dataset. Note that Bond Type #0 represents the absence of bond. """
return self.dims[3]
def reward(self, mols):
rr = 1.
for m in ('logp,sas,qed,unique' if self.hparams.metric == 'all' else self.hparams.metric).split(','):
if m == 'np':
rr *= MolecularMetrics.natural_product_scores(mols, norm=True)
elif m == 'logp':
rr *= MolecularMetrics.water_octanol_partition_coefficient_scores(mols, norm=True)
elif m == 'sas':
rr *= MolecularMetrics.synthetic_accessibility_score_scores(mols, norm=True)
elif m == 'qed':
rr *= MolecularMetrics.quantitative_estimation_druglikeness_scores(mols, norm=True)
elif m == 'novelty':
rr *= MolecularMetrics.novel_scores(mols, self.data)
elif m == 'dc':
rr *= MolecularMetrics.drugcandidate_scores(mols, self.data)
elif m == 'unique':
rr *= MolecularMetrics.unique_scores(mols)
elif m == 'diversity':
rr *= MolecularMetrics.diversity_scores(mols, self.data)
elif m == 'validity':
rr *= MolecularMetrics.valid_scores(mols)
else:
raise RuntimeError('{} is not defined as a metric'.format(m))
return rr.reshape(-1, 1)
def setup(self, stage = None):
if stage == "fit" or stage is None:
self.train_dictlike_data = DictlikeDataset(
gen_data_dict(self.data, self.data.train_idx),
len(self.data.train_idx))
self.val_dictlike_data = DictlikeDataset(
gen_data_dict(self.data, self.data.validation_idx),
len(self.data.validation_idx))
if stage == "test" or stage is None:
self.test_dictlike_data = DictlikeDataset(
gen_data_dict(self.data, self.data.test_idx),
len(self.data.test_idx))
def train_dataloader(self):
return DataLoader(self.train_dictlike_data,
collate_fn=self.train_dictlike_data.collate_fn,
batch_size=self.hparams.batch_size, shuffle=self.hparams.shuffle, num_workers=self.hparams.num_workers)
def val_dataloader(self):
return DataLoader(self.val_dictlike_data,
collate_fn=self.val_dictlike_data.collate_fn,
batch_size=self.hparams.batch_size, num_workers=self.hparams.num_workers, shuffle=False)
def test_dataloader(self):
return DataLoader(self.test_dictlike_data,
collate_fn=self.test_dictlike_data.collate_fn,
batch_size=self.hparams.batch_size, num_workers=self.hparams.num_workers, shuffle=False)
if __name__ == '__main__':
pass