-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtorch_utils.py
73 lines (61 loc) · 2.15 KB
/
torch_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# File : torch_utils.py
# Author : Jing Mai <[email protected]>
# Date : 05.19.2022
# Last Modified Date: 05.19.2022
# Last Modified By : Jing Mai <[email protected]>
import random
import os
from typing import KeysView
import torch
import numpy as np
from torch.utils.data import Dataset
def seed_everything(seed=42):
# Code from `PyTorch Lightning`
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def label2onehot(labels: torch.Tensor, dim):
"""Convert label indices to one-hot vectors."""
out = torch.zeros(list(labels.size()) + [dim]).to(labels.device)
out.scatter_(len(out.size()) - 1, labels.unsqueeze(-1), 1.)
return out
class DictlikeDataset(Dataset):
""" Dataset that wraps a dicts of lists with the same length.
Typically, you should also pass the static method `collate_fn` to the dataloader to merge a list of samples to batch.
"""
def __init__(self, data_dict: dict, len):
self.data_dict = data_dict
self.len = len
self.data_list = [{key: value[i] for key, value in data_dict.items()} for i in range(len)]
@property
def keys(self):
return self.data_dict.keys()
def __len__(self):
return self.len
def __getitem__(self, index):
return self.data_list[index]
@staticmethod
def collate_fn(batch_list:list):
"""
Args:
batch_list (list): A list for a batch of samples.
"""
def stack(x_list):
if isinstance(x_list[0], np.ndarray):
return np.stack(x_list, 0)
elif isinstance(x_list[0], torch.Tensor):
return torch.stack(x_list, 0)
else:
return x_list
keys = batch_list[0].keys()
batch_dict = {
key : stack([d[key] for d in batch_list]) for key in keys
}
return batch_dict