-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathusvp_prec_hack.py
113 lines (89 loc) · 3.55 KB
/
usvp_prec_hack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
"""
Sieve on the top-most bits of the matrix.
"""
from g6k import Siever, SieverParams
from g6k.siever import SaturationError
from g6k.utils.stats import SieveTreeTracer
from usvp import USVPPredSolverResults, USVPPredSieve, usvp_pred_bkz_enum_solve
class USVPPredCutNSieve(USVPPredSieve):
"""
Solve an uSVP with predicate instance with sieving, considering only top most bits of matrix entries.
:param M: FPyLLL ``MatGSO`` object or ``IntegerLattice``
:param predicate: predicate to evaluate
:param invalidate_cache: a callable to invalidate caches for the predicate.
:param preproc_offset: preprocess with block size d - `preproc_offset`, preprocessing is disables when 0.
:param threads: number of threads to use
:returns: statistics
:rtype: ``USVPPredSolverResults``
"""
@classmethod
def __call__(cls, M, predicate, invalidate_cache=lambda: None, preproc_offset=20, threads=1, ph=0, **kwds):
# TODO bkz_sieve would be neater here
if preproc_offset and M.d >= 40:
bkz_res = usvp_pred_bkz_enum_solve(
M,
predicate,
block_size=max(M.d - preproc_offset, 2),
max_loops=8,
threads=threads,
invalidate_cache=invalidate_cache,
)
ntests = bkz_res.ntests
if bkz_res.success: # this might be enough
return bkz_res
else:
bkz_res = None
ntests = 0
from fpylll import IntegerMatrix
# reduce size of entries
B = IntegerMatrix(M.B.nrows, M.B.ncols)
for i in range(M.B.nrows):
for j in range(M.B.ncols):
B[i, j] = M.B[i, j] // 2**ph
params = SieverParams(reserved_n=M.d, otf_lift=False, threads=threads)
g6k = Siever(B, params)
tracer = SieveTreeTracer(g6k, root_label="sieve", start_clocks=True)
g6k.initialize_local(0, M.d // 2, M.d)
while g6k.l:
g6k.extend_left()
with tracer.context("sieve"):
try:
g6k()
except SaturationError:
pass
# fill the database
with g6k.temp_params(**kwds):
g6k()
invalidate_cache()
found, solution = False, None
with tracer.context("check"):
for v in g6k.itervalues(): # heuristic: v has very small entries
ntests += 1
if predicate(v, standard_basis=False):
found = True
solution = tuple([int(v_) for v_ in g6k.M.B.multiply_left(v)])
break
tracer.exit()
cputime = tracer.trace.data["cputime"] + bkz_res.cputime if bkz_res else 0
walltime = tracer.trace.data["walltime"] + bkz_res.walltime if bkz_res else 0
b0, b0e = M.get_r_exp(0, 0)
return USVPPredSolverResults(
success=found,
ntests=ntests,
solution=solution,
b0=b0 ** (0.5) * 2 ** (b0e / 2.0),
cputime=cputime,
walltime=walltime,
data=tracer.trace,
)
@classmethod
def parametersf(cls, M, squared_target_norm):
kwds = USVPPredSieve.parametersf(M, squared_target_norm)
ph = int(M.B[0, 0]).bit_length()
for i in range(M.B.nrows):
for j in range(M.B.ncols):
if M.B[i, j]:
ph = min(int(M.B[i, j]).bit_length(), ph)
kwds["ph"] = max(ph - 128, 0)
return kwds
usvp_pred_cut_n_sieve_solve = USVPPredCutNSieve()