forked from kevinlin311tw/CDCL-human-part-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_7parts.py
executable file
·190 lines (149 loc) · 7.22 KB
/
inference_7parts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import argparse
import sys
parser = argparse.ArgumentParser(description='loading eval params')
parser.add_argument('--gpus', metavar='N', type=int, default=1)
parser.add_argument('--model', type=str, default='./weights/model_simulated_RGB_mgpu_scaling_append.0024.h5', help='path to the weights file')
parser.add_argument('--input_folder', type=str, default='./input', help='path to the folder with test images')
parser.add_argument('--output_folder', type=str, default='./output', help='path to the output folder')
parser.add_argument('--max', type=bool, default=True)
parser.add_argument('--average', type=bool, default=False)
parser.add_argument('--scale', action='append', help='<Required> Set flag', required=True)
args = parser.parse_args()
import cv2
import math
import time
import numpy as np
import util
from config_reader import config_reader
from scipy.ndimage.filters import gaussian_filter
from keras.models import load_model
import code
import copy
import scipy.ndimage as sn
from PIL import Image
from tqdm import tqdm
from model_simulated_RGB101_cdcl_pascal import get_testing_model_resnet101
from human_seg.pascal_voc_human_seg_gt_7parts import human_seg_combine_argmax, human_seg_combine_argmax_rgb
human_part = [0,1,2,3,4,5,6]
human_ori_part = [0,1,2,3,4,5,6]
seg_num = 7 # current model supports 7 parts only
def recover_flipping_output(oriImg, part_ori_size):
part_ori_size = part_ori_size[:, ::-1, :]
part_flip_size = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
part_flip_size[:,:,human_ori_part] = part_ori_size[:,:,human_part]
return part_flip_size
def part_thresholding(seg_argmax):
background = 0.6
head = 0.5
torso = 0.8
part_th = [background, head, torso, 0.55, 0.55, 0.55, 0.55]
th_mask = np.zeros(seg_argmax.shape)
for indx in range(seg_num):
part_prediction = (seg_argmax==indx)
part_prediction = part_prediction*part_th[indx]
th_mask += part_prediction
return th_mask
def process (input_image, params, model_params):
oriImg = cv2.imread(input_image)
flipImg = cv2.flip(oriImg, 1)
oriImg = (oriImg / 256.0) - 0.5
flipImg = (flipImg / 256.0) - 0.5
multiplier = [x for x in params['scale_search']]
seg_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale1 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale2 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale3 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale4 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale5 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale6 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale7 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale8 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
pad = [ 0,
0,
(imageToTest.shape[0] - model_params['stride']) % model_params['stride'],
(imageToTest.shape[1] - model_params['stride']) % model_params['stride']
]
imageToTest_padded = np.pad(imageToTest, ((0, pad[2]), (0, pad[3]), (0, 0)), mode='constant', constant_values=((0, 0), (0, 0), (0, 0)))
input_img = imageToTest[np.newaxis, ...]
print( "\t[Original] Actual size fed into NN: ", input_img.shape)
output_blobs = model.predict(input_img)
seg = np.squeeze(output_blobs[0])
seg = cv2.resize(seg, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
seg = seg[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
seg = cv2.resize(seg, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
if m==0:
segmap_scale1 = seg
elif m==1:
segmap_scale2 = seg
elif m==2:
segmap_scale3 = seg
elif m==3:
segmap_scale4 = seg
# flipping
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(flipImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
pad = [ 0,
0,
(imageToTest.shape[0] - model_params['stride']) % model_params['stride'],
(imageToTest.shape[1] - model_params['stride']) % model_params['stride']
]
imageToTest_padded = np.pad(imageToTest, ((0, pad[2]), (0, pad[3]), (0, 0)), mode='constant', constant_values=((0, 0), (0, 0), (0, 0)))
input_img = imageToTest[np.newaxis, ...]
print( "\t[Flipping] Actual size fed into NN: ", input_img.shape)
output_blobs = model.predict(input_img)
# extract outputs, resize, and remove padding
seg = np.squeeze(output_blobs[0])
seg = cv2.resize(seg, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
seg = seg[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
seg = cv2.resize(seg, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
seg_recover = recover_flipping_output(oriImg, seg)
if m==0:
segmap_scale5 = seg_recover
elif m==1:
segmap_scale6 = seg_recover
elif m==2:
segmap_scale7 = seg_recover
elif m==3:
segmap_scale8 = seg_recover
segmap_a = np.maximum(segmap_scale1,segmap_scale2)
segmap_b = np.maximum(segmap_scale4,segmap_scale3)
segmap_c = np.maximum(segmap_scale5,segmap_scale6)
segmap_d = np.maximum(segmap_scale7,segmap_scale8)
seg_ori = np.maximum(segmap_a, segmap_b)
seg_flip = np.maximum(segmap_c, segmap_d)
seg_avg = np.maximum(seg_ori, seg_flip)
return seg_avg
if __name__ == '__main__':
args = parser.parse_args()
keras_weights_file = args.model
print('start processing...')
# load model
model = get_testing_model_resnet101()
model.load_weights(keras_weights_file)
params, model_params = config_reader()
scale_list = []
for item in args.scale:
scale_list.append(float(item))
params['scale_search'] = scale_list
# generate image with body parts
for filename in os.listdir(args.input_folder):
if filename.endswith(".png") or filename.endswith(".jpg"):
print(args.input_folder+'/'+filename)
seg = process(args.input_folder+'/'+filename, params, model_params)
seg_argmax = np.argmax(seg, axis=-1)
seg_max = np.max(seg, axis=-1)
th_mask = part_thresholding(seg_argmax)
seg_max_thres = (seg_max > 0.1).astype(np.uint8)
seg_argmax *= seg_max_thres
seg_canvas = human_seg_combine_argmax_rgb(seg_argmax)
cur_canvas = cv2.imread(args.input_folder+'/'+filename)
canvas = cv2.addWeighted(seg_canvas, 0.6, cur_canvas, 0.4, 0)
filename = '%s/%s.jpg'%(args.output_folder,'seg_'+filename)
cv2.imwrite(filename, canvas)