Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

can you provide loss value curve ? #17

Open
immortal3 opened this issue Oct 3, 2018 · 0 comments
Open

can you provide loss value curve ? #17

immortal3 opened this issue Oct 3, 2018 · 0 comments

Comments

@immortal3
Copy link

I am trying to reproduce result in PyTorch but loss already start from 10e-2.

class ModMSELoss(torch.nn.Module):
    def __init__(self,shape_r_gt,shape_c_gt):
        super(ModMSELoss, self).__init__()
        self.shape_r_gt = shape_r_gt
        self.shape_c_gt = shape_c_gt
        
    def forward(self, output , label):
        output_max = torch.max(torch.max(output,2)[0],2)[0].unsqueeze(2).unsqueeze(2).expand(output.shape[0],output.shape[1],self.shape_r_gt,self.shape_c_gt)
        loss = torch.mean( ((output / output_max) - label)**2 / (1 - label + 0.1))
        return loss

Menotioned Loss is on training data.

Epcohs:0 Images:500 Loss:0.04258342459797859
Epcohs:0 Images:1000 Loss:0.04922671616077423
Epcohs:0 Images:1500 Loss:0.03176497668027878
Epcohs:0 Images:2000 Loss:0.044319380074739456
Epcohs:0 Images:2500 Loss:0.04123256355524063
Epcohs:0 Images:3000 Loss:0.033859699964523315
Epcohs:0 Images:3500 Loss:0.03699108585715294
Epcohs:0 Images:4000 Loss:0.025232627987861633
Epcohs:0 Images:4500 Loss:0.041686929762363434
Epcohs:0 Images:5000 Loss:0.036925509572029114
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant