-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathmodels.py
155 lines (113 loc) · 7.19 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from __future__ import division
from keras.layers import Lambda, merge
from keras.layers.convolutional import Convolution2D, AtrousConvolution2D
import keras.backend as K
import theano.tensor as T
import numpy as np
from dcn_vgg import dcn_vgg
from dcn_resnet import dcn_resnet
from gaussian_prior import LearningPrior
from attentive_convlstm import AttentiveConvLSTM
from config import *
def repeat(x):
return K.reshape(K.repeat(K.batch_flatten(x), nb_timestep), (b_s, nb_timestep, 512, shape_r_gt, shape_c_gt))
def repeat_shape(s):
return (s[0], nb_timestep) + s[1:]
def upsampling(x):
return T.nnet.abstract_conv.bilinear_upsampling(input=x, ratio=upsampling_factor, num_input_channels=1, batch_size=b_s)
def upsampling_shape(s):
return s[:2] + (s[2] * upsampling_factor, s[3] * upsampling_factor)
# KL-Divergence Loss
def kl_divergence(y_true, y_pred):
max_y_pred = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.max(K.max(y_pred, axis=2), axis=2)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_pred /= max_y_pred
sum_y_true = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.sum(K.sum(y_true, axis=2), axis=2)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
sum_y_pred = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.sum(K.sum(y_pred, axis=2), axis=2)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_true /= (sum_y_true + K.epsilon())
y_pred /= (sum_y_pred + K.epsilon())
return 10 * K.sum(K.sum(y_true * K.log((y_true / (y_pred + K.epsilon())) + K.epsilon()), axis=-1), axis=-1)
# Correlation Coefficient Loss
def correlation_coefficient(y_true, y_pred):
max_y_pred = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.max(K.max(y_pred, axis=2), axis=2)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_pred /= max_y_pred
sum_y_true = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.sum(K.sum(y_true, axis=2), axis=2)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
sum_y_pred = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.sum(K.sum(y_pred, axis=2), axis=2)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_true /= (sum_y_true + K.epsilon())
y_pred /= (sum_y_pred + K.epsilon())
N = shape_r_out * shape_c_out
sum_prod = K.sum(K.sum(y_true * y_pred, axis=2), axis=2)
sum_x = K.sum(K.sum(y_true, axis=2), axis=2)
sum_y = K.sum(K.sum(y_pred, axis=2), axis=2)
sum_x_square = K.sum(K.sum(K.square(y_true), axis=2), axis=2)
sum_y_square = K.sum(K.sum(K.square(y_pred), axis=2), axis=2)
num = sum_prod - ((sum_x * sum_y) / N)
den = K.sqrt((sum_x_square - K.square(sum_x) / N) * (sum_y_square - K.square(sum_y) / N))
return -2 * num / den
# Normalized Scanpath Saliency Loss
def nss(y_true, y_pred):
max_y_pred = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.max(K.max(y_pred, axis=2), axis=2)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_pred /= max_y_pred
y_pred_flatten = K.batch_flatten(y_pred)
y_mean = K.mean(y_pred_flatten, axis=-1)
y_mean = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.expand_dims(y_mean)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_std = K.std(y_pred_flatten, axis=-1)
y_std = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.expand_dims(y_std)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_pred = (y_pred - y_mean) / (y_std + K.epsilon())
return -(K.sum(K.sum(y_true * y_pred, axis=2), axis=2) / K.sum(K.sum(y_true, axis=2), axis=2))
# Gaussian priors initialization
def gaussian_priors_init(shape, name=None):
means = np.random.uniform(low=0.3, high=0.7, size=shape[0] // 2)
covars = np.random.uniform(low=0.05, high=0.3, size=shape[0] // 2)
return K.variable(np.concatenate((means, covars), axis=0), name=name)
def sam_vgg(x):
# Dilated Convolutional Network
dcn = dcn_vgg(input_tensor=x[0])
# Attentive Convolutional LSTM
att_convlstm = Lambda(repeat, repeat_shape)(dcn.output)
att_convlstm = AttentiveConvLSTM(nb_filters_in=512, nb_filters_out=512, nb_filters_att=512,
nb_cols=3, nb_rows=3)(att_convlstm)
# Learned Prior (1)
priors1 = LearningPrior(nb_gaussian=nb_gaussian, init=gaussian_priors_init)(x[1])
concateneted = merge([att_convlstm, priors1], mode='concat', concat_axis=1)
learned_priors1 = AtrousConvolution2D(512, 5, 5, border_mode='same', activation='relu',
atrous_rate=(4, 4))(concateneted)
# Learned Prior (2)
priors2 = LearningPrior(nb_gaussian=nb_gaussian, init=gaussian_priors_init)(x[1])
concateneted = merge([learned_priors1, priors2], mode='concat', concat_axis=1)
learned_priors2 = AtrousConvolution2D(512, 5, 5, border_mode='same', activation='relu',
atrous_rate=(4, 4))(concateneted)
# Final Convolutional Layer
outs = Convolution2D(1, 1, 1, border_mode='same', activation='relu')(learned_priors2)
outs_up = Lambda(upsampling, upsampling_shape)(outs)
return [outs_up, outs_up, outs_up]
def sam_resnet(x):
# Dilated Convolutional Network
dcn = dcn_resnet(input_tensor=x[0])
conv_feat = Convolution2D(512, 3, 3, border_mode='same', activation='relu')(dcn.output)
# Attentive Convolutional LSTM
att_convlstm = Lambda(repeat, repeat_shape)(conv_feat)
att_convlstm = AttentiveConvLSTM(nb_filters_in=512, nb_filters_out=512, nb_filters_att=512,
nb_cols=3, nb_rows=3)(att_convlstm)
# Learned Prior (1)
priors1 = LearningPrior(nb_gaussian=nb_gaussian, init=gaussian_priors_init)(x[1])
concateneted = merge([att_convlstm, priors1], mode='concat', concat_axis=1)
learned_priors1 = AtrousConvolution2D(512, 5, 5, border_mode='same', activation='relu',
atrous_rate=(4, 4))(concateneted)
# Learned Prior (2)
priors2 = LearningPrior(nb_gaussian=nb_gaussian, init=gaussian_priors_init)(x[1])
concateneted = merge([learned_priors1, priors2], mode='concat', concat_axis=1)
learned_priors2 = AtrousConvolution2D(512, 5, 5, border_mode='same', activation='relu',
atrous_rate=(4, 4))(concateneted)
# Final Convolutional Layer
outs = Convolution2D(1, 1, 1, border_mode='same', activation='relu')(learned_priors2)
outs_up = Lambda(upsampling, upsampling_shape)(outs)
return [outs_up, outs_up, outs_up]