-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_python_colourmap_test.py
88 lines (65 loc) · 1.95 KB
/
custom_python_colourmap_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 15 14:50:10 2017
@author: mlague
"""
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 2 12:32:12 2017
@author: mlague
"""
# In[]:
# For interactive in-line plots:
#%matplotlib nbagg
# For inline plots:
#%matplotlib inline
import matplotlib
import numpy as np
import os
import datetime
#import netCDF4 as nc
import xarray as xr
from scipy import interpolate
import numpy.matlib
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap, cm
#import brewer2mpl as cbrew
import scipy.io as sio
#from mml_mapping_fun import mml_map, mml_map_NA, mml_neon_box
from IPython.display import display
from IPython.display import HTML
import IPython.core.display as di # Example: di.display_html('<h3>%s:</h3>' % str, raw=True)
# Avoid having to restart kernel if I modify my mapping scripts.
import imp
#imp.reload(mml_map)
#imp.reload(mml_map_NA)
#imp.reload(mml_neon_box)
import matplotlib.colors as mcolors
# In[]:
def make_colormap(seq):
"""Return a LinearSegmentedColormap
seq: a sequence of floats and RGB-tuples. The floats should be increasing
and in the interval (0,1).
"""
seq = [(None,) * 3, 0.0] + list(seq) + [1.0, (None,) * 3]
cdict = {'red': [], 'green': [], 'blue': []}
for i, item in enumerate(seq):
if isinstance(item, float):
r1, g1, b1 = seq[i - 1]
r2, g2, b2 = seq[i + 1]
cdict['red'].append([item, r1, r2])
cdict['green'].append([item, g1, g2])
cdict['blue'].append([item, b1, b2])
return mcolors.LinearSegmentedColormap('CustomMap', cdict)
# In[]:
c = mcolors.ColorConverter().to_rgb
wrbw = make_colormap(
[c('white'), c('red'), 0.5, c('blue'), c('white')])
N = 1000
array_dg = np.random.uniform(0, 10, size=(N, 2))
colors = np.random.uniform(-2, 2, size=(N,))
plt.scatter(array_dg[:, 0], array_dg[:, 1], c=colors, cmap=wrbw)
plt.colorbar()
plt.show()
# In[]: