-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmtcnn.js
367 lines (294 loc) · 11.5 KB
/
mtcnn.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
class MTCNN {
stepsThreshold = [0.6, 0.7, 0.7]
minFaceSize = 20
_scaleFactor = 0.709
constructor() {
// Initialize variables for storing loaded models
this.pNet = null;
this.rNet = null;
this.oNet = null;
this.loadModels();
}
async loadModels() {
this.pNet = await ort.InferenceSession.create('mtcnn_ort/pnet.onnx');
this.rNet = await ort.InferenceSession.create('mtcnn_ort/rnet.onnx');
this.oNet = await ort.InferenceSession.create('mtcnn_ort/onet.onnx');
}
preprocessImage(image) {
const canvas = document.createElement('canvas');
const ctx = canvas.getContext('2d');
canvas.width = 160; // Assuming 160 is the required dimension
canvas.height = 160;
// Draw and resize the image on the canvas
ctx.drawImage(image, 0, 0, canvas.width, canvas.height);
// Extract image data
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
const data = imageData.data;
const float32Data = new Float32Array(3 * 160 * 160);
for (let i = 0, j = 0; i < data.length; i += 4, j += 3) {
// Convert from RGBA to RGB and normalize the data
float32Data[j] = (data[i] - 127.5) / 128.0;
float32Data[j + 1] = (data[i + 1] - 127.5) / 128.0;
float32Data[j + 2] = (data[i + 2] - 127.5) / 128.0;
}
return new ort.Tensor('float32', float32Data, [1, 3, 160, 160]);
}
nonMaximumSuppression(boxes, threshold, method) {
if (boxes.length === 0) {
return [];
}
const areas = boxes.map(box => (box.x2 - box.x1 + 1) * (box.y2 - box.y1 + 1));
const s = boxes.map(box => box.score);
let sortedIndices = s.map((score, index) => index).sort((a, b) => s[b] - s[a]);
const pick = [];
while (sortedIndices.length > 0) {
let last = sortedIndices.length - 1;
let i = sortedIndices[last];
pick.push(boxes[i]);
let maxxx1 = [];
let maxyy1 = [];
let minxx2 = [];
let minyy2 = [];
let w = [];
let h = [];
for (let j = 0; j < last; j++) {
let idx = sortedIndices[j];
maxxx1[j] = Math.max(boxes[i].x1, boxes[idx].x1);
maxyy1[j] = Math.max(boxes[i].y1, boxes[idx].y1);
minxx2[j] = Math.min(boxes[i].x2, boxes[idx].x2);
minyy2[j] = Math.min(boxes[i].y2, boxes[idx].y2);
w[j] = Math.max(0.0, minxx2[j] - maxxx1[j] + 1);
h[j] = Math.max(0.0, minyy2[j] - maxyy1[j] + 1);
}
const inter = w.map((width, index) => width * h[index]);
let o;
if (method === 'Min') {
o = inter.map((_, index) => inter[index] / Math.min(areas[i], areas[sortedIndices[index]]));
} else {
o = inter.map((_, index) => inter[index] / (areas[i] + areas[sortedIndices[index]] - inter[index]));
}
sortedIndices = sortedIndices.filter((_, index) => o[index] <= threshold);
}
return pick;
}
async runPNet(image) {
// Preprocess the image
const inputTensor = this.preprocessImage(image);
// Run the P-Net model
const pNetOutputs = await this.pNet.run({ input: inputTensor });
// Extract and process P-Net outputs to get candidate bounding boxes
// This involves interpreting the model outputs, applying NMS, etc.
// Pseudo-code below, replace with actual implementation
const boxes = this.processPNetOutputs(pNetOutputs);
return boxes;
}
computeScalePyramid(m, minLayer) {
const scales = [];
let factorCount = 0;
while (minLayer >= 12) {
scales.push(m * Math.pow(this._scaleFactor, factorCount));
minLayer *= this._scaleFactor;
factorCount++;
}
return scales;
}
async markFaces(imageData) {
if (!this.pNet) {
await this.loadModels();
}
console.info("markFaces", imageData)
// Assuming `detectFaces` is a method that returns face detections with bounding boxes and keypoints
const results = await this.detectFaces(imageData);
console.info("markFaces results", results)
// Create a canvas and get the context for drawing
const canvas = document.createElement('canvas');
canvas.width = imageData.width;
canvas.height = imageData.height;
const ctx = canvas.getContext('2d');
ctx.drawImage(imageData, 0, 0);
// Draw rectangles and keypoints
results.forEach(result => {
const box = result.box;
ctx.strokeStyle = 'rgb(0, 155, 255)';
ctx.lineWidth = 2;
ctx.strokeRect(box[0], box[1], box[2], box[3]);
ctx.fillStyle = 'rgb(0, 155, 255)';
Object.values(result.keypoints).forEach(point => {
ctx.beginPath();
ctx.arc(point[0], point[1], 2, 0, 2 * Math.PI);
ctx.fill();
});
});
return canvas; // Returns the image as a data URL
}
async detectFacesRaw(image) {
if (!image) {
throw new Error("Image not valid.");
}
console.info("detectFacesRaw", image.width, image.height)
const height = image.height;
const width = image.width;
let stageStatus = new StageStatus(null, width, height);
const m = 12 / this.minFaceSize; // Assuming this.minFaceSize is defined
const minLayer = Math.min(height, width) * m;
const scales = this.computeScalePyramid(m, minLayer);
const stages = [this.stage1.bind(this)/*, this.stage2, this.stage3*/]; // Assuming these stages are defined
let result = [scales, stageStatus];
for (const stage of stages) {
result = await stage(image, result[0], result[1]);
}
return result; // [total_boxes, points]
}
async detectFaces(image) {
const [totalBoxes, points] = await this.detectFacesRaw(image);
const boundingBoxes = totalBoxes.map((boundingBox, i) => {
const keypoints = points[i];
return {
box: [Math.max(0, boundingBox.x1), Math.max(0, boundingBox.y1), boundingBox.x2 - boundingBox.x1, boundingBox.y2 - boundingBox.y1],
confidence: boundingBox.score,
keypoints: {
left_eye: keypoints.leftEye,
right_eye: keypoints.rightEye,
nose: keypoints.nose,
mouth_left: keypoints.mouthLeft,
mouth_right: keypoints.mouthRight
}
};
});
return boundingBoxes;
}
imageDataToTensor(imageData) {
const { data, width, height } = imageData;
const tensorData = new Float32Array(width * height * 3);
for (let i = 0, j = 0; i < data.length; i += 4, j += 3) {
tensorData[j] = data[i]; // Red
tensorData[j + 1] = data[i + 1]; // Green
tensorData[j + 2] = data[i + 2]; // Blue
// Alpha channel is ignored
}
// Normalize if necessary
// Return the tensor with the shape that matches your model's input
console.info("TENSOR???", [1, 3, height, width]);
return new ort.Tensor('float32', tensorData, [1, 3, height, width]);
}
async stage1(image, scales, stageStatus) {
console.info("stage1", this, image, scales, stageStatus)
let totalBoxes = [];
const threshold = 0.6; // Example threshold value, adjust based on your model's requirements
for (const scale of scales) {
const scaledImage = this.scaleImage(image, scale);
const imgY = this.transposeImage(scaledImage);
const tensor = this.imageDataToTensor(imgY); // Convert to tensor
// Run P-Net model
const out = await this.pNet.run({ input_1: tensor});
// Process P-Net outputs to generate bounding boxes
const boxes = this.generateBoundingBox(out, scale, threshold);
// Inter-scale NMS
const pick = this.nonMaximumSuppression(boxes, 0.5, 'Union');
if (boxes.length > 0 && pick.length > 0) {
const pickedBoxes = pick.map(index => boxes[index]);
totalBoxes = totalBoxes.concat(pickedBoxes);
}
}
// Further processing on totalBoxes
if (totalBoxes.length > 0) {
const pick = this.nonMaximumSuppression(totalBoxes, 0.7, 'Union');
totalBoxes = pick.map(index => totalBoxes[index]);
// Refine boxes
totalBoxes = this.refineBoxes(totalBoxes);
console.info("totalBoxes, stageStatus", totalBoxes, stageStatus)
// Update stage status
stageStatus = this.updateStageStatus(totalBoxes, stageStatus);
}
return [totalBoxes, stageStatus];
}
refineBoxes(boxes) {
return boxes.map(box => {
const regw = box.x2 - box.x1;
const regh = box.y2 - box.y1;
const qq1 = box.x1 + box.reg[0] * regw;
const qq2 = box.y1 + box.reg[1] * regh;
const qq3 = box.x2 + box.reg[2] * regw;
const qq4 = box.y2 + box.reg[3] * regh;
return {
x1: qq1,
y1: qq2,
x2: qq3,
y2: qq4,
score: box.score
};
});
}
generateBoundingBox(pNetOutput, scale, threshold) {
const confidenceData = pNetOutput.confidences.data; // Assuming this is the confidence output
const regressionData = pNetOutput.regressions.data; // Assuming this is the regression output
let boxes = [];
for (let y = 0; y < pNetOutput.confidences.shape[1]; y++) {
for (let x = 0; x < pNetOutput.confidences.shape[2]; x++) {
const score = confidenceData[y * pNetOutput.confidences.shape[2] + x];
if (score > threshold) {
const reg = regressionData.slice((y * pNetOutput.confidences.shape[2] + x) * 4, ((y * pNetOutput.confidences.shape[2] + x) + 1) * 4);
const box = {
x1: Math.round(x * 2 / scale),
y1: Math.round(y * 2 / scale),
x2: Math.round((x * 2 + 12) / scale),
y2: Math.round((y * 2 + 12) / scale),
score: score,
reg: reg
};
boxes.push(box);
}
}
}
return boxes;
}
transposeImage(imageData) {
const width = imageData.width;
const height = imageData.height;
const transposedData = new Uint8ClampedArray(width * height * 4);
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
const originalIndex = (y * width + x) * 4;
const transposedIndex = (x * height + y) * 4;
transposedData[transposedIndex] = imageData.data[originalIndex]; // R
transposedData[transposedIndex + 1] = imageData.data[originalIndex + 1]; // G
transposedData[transposedIndex + 2] = imageData.data[originalIndex + 2]; // B
transposedData[transposedIndex + 3] = imageData.data[originalIndex + 3]; // A
}
}
return new ImageData(transposedData, height, width);
}
scaleImage(image, scale) {
const widthScaled = Math.ceil(image.width * scale);
const heightScaled = Math.ceil(image.height * scale);
// Create a canvas and resize the image
const canvas = document.createElement('canvas');
canvas.width = widthScaled;
canvas.height = heightScaled;
const ctx = canvas.getContext('2d');
ctx.drawImage(image, 0, 0, widthScaled, heightScaled);
// Extract the image data and normalize
const imageData = ctx.getImageData(0, 0, widthScaled, heightScaled);
const data = imageData.data;
for (let i = 0; i < data.length; i += 4) {
data[i] = (data[i] - 127.5) * 0.0078125; // Red
data[i + 1] = (data[i + 1] - 127.5) * 0.0078125; // Green
data[i + 2] = (data[i + 2] - 127.5) * 0.0078125; // Blue
}
return imageData;
}
// Additional class methods will be defined below
}
class StageStatus {
constructor(padResult = null, width = 0, height = 0) {
this.width = width;
this.height = height;
this.dy = this.edy = this.dx = this.edx = this.y = this.ey = this.x = this.ex = this.tmpw = this.tmph = [];
if (padResult !== null) {
this.update(padResult);
}
}
update(padResult) {
[this.dy, this.edy, this.dx, this.edx, this.y, this.ey, this.x, this.ex, this.tmpw, this.tmph] = padResult;
}
}