-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMedFMC_train_txt.py
31 lines (27 loc) · 1.58 KB
/
MedFMC_train_txt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import pandas as pd
data = pd.read_csv('F:/MedFMC/MedFMC_train/chest/train.csv', encoding='utf-8')
print(data.values)
with open('chest_trainval.txt','a+', encoding='utf-8') as f:
for line in data.values:
f.write((str(line[0]) + ' ' + str(line[1]) + ',' + str(line[2]) + ',' + str(line[3]) + ',' + str(line[4]) + ',' +
str(line[5]) + ',' +str(line[6]) + ',' +str(line[7]) + ',' +str(line[8]) + ',' +
str(line[9]) + ',' + str(line[10]) + ',' +str(line[11]) + ',' +str(line[12]) + ',' + str(line[13]) + ',' +
str(line[14]) + ',' +str(line[15]) + ',' +str(line[16]) + ',' + str(line[17]) + ',' +
str(line[18]) + ',' + str(line[19]) + '\n'))
#
data = pd.read_csv('F:/MedFMC/MedFMC_train/colon/train.csv', encoding='utf-8')
with open('colon_trainval.txt','a+', encoding='utf-8') as f:
for line in data.values:
f.write((str(line[0]) + ' ' + str(line[1]) + '\n'))
data = pd.read_csv('F:/MedFMC/MedFMC_train/endo/train.csv', encoding='utf-8')
print(data.values)
with open('endo_trainval.txt','a+', encoding='utf-8') as f:
for line in data.values:
f.write((str(line[0]) + ' ' + str(line[1]) + ' ' + str(line[2]) + ' ' + str(line[3]) + ' ' + str(line[4]) + '\n'))
val_list = ['endo']
for i in range(len(val_list)):
data = pd.read_csv('F:/MedFMC/MedFMC_val/'+val_list[i]+'/test_witout_label.csv', encoding='utf-8')
with open(val_list[i]+'_test_without_label.txt','a+', encoding='utf-8') as f:
for line in data.values:
print(line)
f.write((str(line[0])+'\n'))