-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathorbits_figure.py
executable file
·995 lines (718 loc) · 33.9 KB
/
orbits_figure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
#!/usr/bin/env python
# makes figures, saves in fig_dir:
# - levelsets and trajectories for orbits system reference solution, for
# use in central ideas section. no input data. saves data in data_dir;
# set make_data=False to read instead of regenerating.
# - orbits results plot.
# reads plot_data/orbits_{RUN_ID}_controlcosts_2d.msgpack.gz from
# data_dir. make that by running ./orbits_experiment --eval=RUN_ID. make
# sure in levelsets.evaluate that eval_controlcost_2d is on.
import diffrax
import flax
import jax
import jax.numpy as np
from jax import config
config.update("jax_enable_x64", True)
import gzip
import os
import pickle
import warnings
from functools import partial
import ipdb
import matplotlib
import matplotlib.pyplot as pl
import numpy as onp
import scipy
import tqdm
import pontryagin_utils
from fig_config import *
from misc import *
from orbits_experiment import base_algo_params, define_problem_params
plot_results = False
plot_trajectories=True
plot_levelsets = True
run_id = 'i2tcnb3h'
cmap = matplotlib.colormaps['viridis']
levelset_alpha=.7
traj_alpha = .7
N_trajs = 4096
# define basics {{{
problem_params = define_problem_params()
algo_params = base_algo_params()
# magic switch for value level sets.
algo_params['reparam'] = True
algo_params['dtmin'] = 0.001 # smaller for initial stuff
algo_params['dtmax'] = 1000. # larger for high v
algo_params['pontryagin_solver_atol'] = 1e-5
algo_params['pontryagin_solver_rtol'] = 1e-5
algo_params['pontryagin_solver_maxsteps'] = 128
solve_backward, f_extended = pontryagin_utils.define_backward_solver(problem_params, algo_params)
K_lqr, P_lqr = pontryagin_utils.get_terminal_lqr(problem_params)
@partial(jax.jit, static_argnums=2)
def remesh(sols, frac, remesh_final):
# the magic sauce.
# if necessary: find here by bisection the largest v such that some
# maximum distance between points is not exceeded.
# frac=1 -> arclength at t1
# frac=0 -> arclength at t0
yfs = jax.vmap(lambda sol: sol.evaluate(sol.t0 * (1-frac) + sol.t1 * frac))(sols)
# yfs['x'] represents a closed curve in state space. consider it equal to
# its piecewise linear interpolation for now. we want something like the
# arclength parametrization, to redistribute the points equidistantly. how?
# first get the distances between all the neighbors.
xs = yfs['x']
rolled_xs = np.roll(xs, -1, axis=0)
lifted_arclen=False
if lifted_arclen:
# compute arclentghs in full (x, λ) space.
# but normalise gradient. only care about direction.
lams = yfs['vx'] / np.linalg.norm(yfs['vx'], axis=1)[:, None]
rolled_lams = np.roll(lams, -1, axis=0)
neighbor_dists = np.linalg.norm(np.hstack([xs, lams]) - np.hstack([rolled_xs, rolled_lams]), axis=1)
else:
neighbor_dists = np.linalg.norm(xs - rolled_xs, axis=1)
arclengths = np.cumsum(neighbor_dists)
# now, find a new set of points that are equidistant in arclength.
# considering arclengths as a function of the index, we see it is monotonously increasing and thus invertible.
# thus we can also view index as a function of arclength! and use standard numpy interp thing.
N = yfs['x'].shape[0]
arclengths_even = np.linspace(0, arclengths[-1], N)
frac_idx = np.interp(arclengths_even, arclengths, np.arange(N))
# now, we can use this fractional index to interpolate the new points.
# maybe this could have been done in a single step???
# instead use the previous ys for that interpolation.
# t = (1-frac) * sols.t0[0] + (frac) * sols.t1[0]
# ys_remesh = jax.vmap(lambda sol: sol.evaluate(sol.t0 * (1-frac) + sol.t1 * frac))(sols)
ys_remesh = jax.vmap(lambda sol: sol.evaluate(sol.t0))(sols)
new_v = np.interp(frac_idx, np.arange(N), ys_remesh['v'])
new_x = np.array([np.interp(frac_idx, np.arange(N), ys_remesh['x'][:, i]) for i in range(2)]).T
new_vx = np.array([np.interp(frac_idx, np.arange(N), ys_remesh['vx'][:, i]) for i in range(2)]).T
new_t = np.interp(frac_idx, np.arange(N), ys_remesh['t'])
if remesh_final:
new_v = jax.vmap(V_f)(new_x)
new_vx = jax.vmap(jax.grad(V_f))(new_x)
new_t = np.zeros_like(new_v)
new_y = dict(x=new_x, v=new_v, vx=new_vx, t=new_t)
return new_y
solve_fast = jax.jit(jax.vmap(solve_backward, in_axes=(0, None)))
eq = problem_params['x_eq']
V_f = lambda x: 0.5 * (x - eq).T @ P_lqr @ (x - eq)
thetas = np.linspace(0, 2 * np.pi, N_trajs)
circle_xs = jax.vmap(lambda theta: np.array([np.sin(theta), np.cos(theta)]))(thetas)
xfs = 0.1 * circle_xs @ np.linalg.inv(scipy.linalg.sqrtm(P_lqr)) + problem_params['x_eq'][None, :]
yfs = jax.vmap(lambda xf: dict(x=xf, v=V_f(xf), vx=jax.grad(V_f)(xf), t=0.))(xfs)
yf = jtm(itemgetter(0), yfs)
vf = yf['v']
vmax = 420
N=20
levels = np.logspace(np.log10(vf*2), np.log10(vmax), N)
levels = np.linspace(np.sqrt(vf*2), np.sqrt(vmax), N)**2
# solve_fast = jax.vmap(solve_backward, in_axes=(0, None))
# }}}
# make or read data {{{
fpath_sols = os.path.join(data_dir, 'orbits_refsol.msgpack.gz')
fpath_treedef = os.path.join(data_dir, 'orbits_refsol_treedef.pickle')
make_data = False
if make_data:
remesh_final = True
sols = None
def find_min_l(yfs):
def l_of_y(y):
x = y['x']
vx = y['vx']
u = pontryagin_utils.u_star_general(x, vx, problem_params)
return problem_params['l'](x, u)
ls = jax.vmap(l_of_y)(yfs)
min_l = np.min(ls)
return min_l
# stable manifold calculation. remeshing followed by recreating the
# solutions all the way from Xf.
with tqdm.tqdm(total=vmax) as pbar:
for v_upper in levels:
# otherwise it needs the increment not absolute progress.
# https://github.com/tqdm/tqdm/issues/1264
pbar.n = v_upper.item()
pbar.refresh()
# alright so it has to work a bit differently.
# 1. get solutions starting at uniformly spaced points on dVk
# 2. remesh them to be equidistant at dVk+1
# 3. get solutions again.
# step size selection just like the real thing
min_l = find_min_l(yfs)
vstep = 3. * min_l
v_upper = v_upper + vstep
# 1. uniform solutions.
sols_uniform = solve_fast(yfs, v_upper)
# 2. remeshing
yfs = remesh(sols_uniform, 1.0, remesh_final)
# 3. remeshed solutions.
sols = solve_fast(yfs, v_upper)
# pl.plot(*sols_uniform.ys['x'].reshape(-1,2).T, alpha=.3, label='uniform', c='grey')
# pl.plot(*sols.ys['x'][::1].reshape(-1,2).T, alpha=.05, label='remeshed', c='black')
# pl.legend()
# yprev = yfs
if remesh_final:
yfs = jax.vmap(lambda sol: sol.evaluate(sol.t0))(sols)
else:
yfs = jax.vmap(lambda sol: sol.evaluate(sol.t1))(sols)
viridis = matplotlib.colormaps['viridis']
# pl.plot(*yfs['x'].T, '-', alpha=.5, color = viridis(v_upper / levels[-1]) )
# pl.plot(*sols.ys['x'].reshape(-1, 2).T, color='black', alpha=.1 )
# now we have the sols object.
print('saving sols...')
# flattens into list of array leaves
sols_flat, sols_shape = jax.tree_util.tree_flatten(sols)
bs = flax.serialization.msgpack_serialize(sols_flat)
with gzip.open(fpath_sols, 'wb') as f:
f.write(bs)
with open(fpath_treedef, 'wb') as f:
pickle.dump(sols_shape, f)
else:
print('make_data=False. instead reading from file.')
with gzip.open(fpath_sols, 'rb') as f:
bs = f.read()
sols_flat = flax.serialization.msgpack_restore(bs)
sols_flat = jtm(np.array, sols_flat) # np array -> jax array
with open(fpath_treedef, 'rb') as f:
sols_shape = pickle.load(f)
# i really did not think this would just work...
sols = jax.tree_util.tree_unflatten(sols_shape, sols_flat)
# }}}
def plot_levelset(v, grey=False, alpha=None, label=None):
ys = jax.vmap(lambda sol: sol.evaluate(v))(sols)
if grey:
color = 'black'
else:
color = cmap(v / levels[-1])
a = alpha if alpha is not None else levelset_alpha
pl.plot(*ys['x'].T, alpha=a, color = color, label=label)
# trajectories plot {{{
if plot_trajectories:
fig = pl.figure('trajectories', figsize=(pagewidth, 0.4*pagewidth), dpi=dpi)
v0, v1 = 2., 50.
eps = 0.001 # to certainly land in interior of domain of interpolation
# evaluate at nan too to break up line
vs_plot = np.concatenate([np.logspace(np.log10(v0+eps), np.log10(v1-eps), 51), np.array([np.nan])])
subsample = 32 * (N_trajs // 512)
# v0, v1 = (150., 300.)
ax = pl.subplot(121)
# no labels here.
pl.axis('off')
# ax.set_aspect('equal')
plot_levelset(v0, grey=True)
plot_levelset(v1, grey=True)
# yfs at lower value level v0
yfs = jax.vmap(lambda sol: sol.evaluate(v0))(sols)
# trajectories from v0 to v1 (with distribution of last traj batch!)
sols_partial = solve_fast(yfs, v1)
yfs_uniform_lower = remesh(sols_partial, 0., False)
yfs_uniform_upper = remesh(sols_partial, 1., False)
sols_uniform_lower = solve_fast(yfs_uniform_lower, v1)
sols_uniform_upper = solve_fast(yfs_uniform_upper, v1)
plot_ys = jax.vmap(lambda sol: jax.vmap(sol.evaluate)(vs_plot))(sols_uniform_lower)
pl.plot(*plot_ys['x'][::subsample].reshape(-1,2).T, alpha=traj_alpha)
ax = pl.subplot(122, sharex=ax, sharey=ax)
# ax.set_aspect('equal')
pl.axis('off')
plot_ys = jax.vmap(lambda sol: jax.vmap(sol.evaluate)(vs_plot))(sols_uniform_upper)
plot_levelset(v0, grey=True, label='Value level sets')
plot_levelset(v1, grey=True)
pl.plot(*plot_ys['x'][::subsample].reshape(-1,2).T, alpha=traj_alpha, label='Optimal trajectories')
pl.legend()
fig.tight_layout()
pl.savefig(f'./{fig_dir}/trajectories.{fig_format}', dpi=dpi)
# second trajectories plot, to illustrate the "long integration" thing.
fig = pl.figure('trajectories_remeshing', figsize=(pagewidth, 0.4*pagewidth), dpi=dpi)
v0, v1 = 2., 50.
eps = 0.001 # to certainly land in interior of domain of interpolation
# evaluate at nan too to break up line
# vs_plot = np.concatenate([np.logspace(np.log10(v0+eps), np.log10(v1-eps), 8), np.array([np.nan])])
vs_levelsets = np.logspace(np.log10(v0+eps), np.log10(v1-eps), 4)
# subsample = 32 * (N_trajs // 512)
ax = pl.subplot(121)
pl.axis('off')
for v in vs_levelsets:
plot_levelset(v, grey=True, alpha=0.5)
# 'bad' option with trajectories appropriately remeshed, but restarted at each level set
for v_lower, v_upper in zip(vs_levelsets[:-1], vs_levelsets[1:]):
# yfs at lower value level v0
yfs = jax.vmap(lambda sol: sol.evaluate(v0))(sols)
# trajectories from v0 to v1 (with distribution of last traj batch!)
sols_partial = solve_fast(yfs, v_upper)
# remesh to obtain even spacing at level set v_upper
vs_plot_levelset = np.concatenate([np.linspace(v_lower, v_upper, 10), np.array([np.nan])])
yfs_uniform_upper = remesh(sols_partial, 1., False)
sols_uniform_upper = solve_fast(yfs_uniform_upper, v_upper)
# & plot
plot_ys_levelset = jax.vmap(lambda sol: jax.vmap(sol.evaluate)(vs_plot_levelset))(sols_uniform_upper)
# do this offset move to remove the visual regularity
offset = onp.random.randint(subsample)
rolled_xs = np.roll(plot_ys_levelset['x'], offset, axis=0)
pl.plot(*rolled_xs[::subsample].reshape(-1,2).T, alpha=traj_alpha, c='C0')
pl.plot(*rolled_xs[::subsample, 0, :].T, '. ', c='red')
# good option, with longer trajectories. might be not as simple though here...
ax = pl.subplot(122, sharex=ax, sharey=ax)
pl.axis('off')
for v in vs_levelsets:
if v == vs_levelsets[0]:
plot_levelset(v, grey=True, alpha=0.5, label='Value level sets')
else:
plot_levelset(v, grey=True, alpha=0.5)
sqrtspace = lambda a, b, n: np.linspace(np.sqrt(a), np.sqrt(b), n)**2
def remesh_idx(sols, v):
# find (integer) indices of sols which are equidistant at level v.
yfs = jax.vmap(lambda sol: sol.evaluate(v))(sols)
# arclengths purely in x.
xs = yfs['x']
rolled_xs = np.roll(xs, -1, axis=0)
neighbor_dists = np.linalg.norm(xs - rolled_xs, axis=1)
arclengths = np.cumsum(neighbor_dists)
# now, find a new set of points that are equidistant in arclength.
# considering arclengths as a function of the index, we see it is monotonously increasing and thus invertible.
# thus we can also view index as a function of arclength! and use standard numpy interp thing.
N = yfs['x'].shape[0]
arclengths_even = np.linspace(0, arclengths[-1], N)
frac_idx = np.interp(arclengths_even, arclengths, np.arange(N))
return np.floor(frac_idx).astype(int)
def plot_trajs(idxs, v_lower, v_upper):
vs_plot_levelset = np.concatenate([sqrtspace(v_lower, v_upper, 32), np.array([np.nan])])
plot_ys_levelset = jax.vmap(lambda sol: jax.vmap(sol.evaluate)(vs_plot_levelset))(sols)
# plot blue line for each trajectory (separated by nan in vs_plot_levelset)
label = 'Optimal trajectories' if v_lower == vs_levelsets[0] else None
pl.plot(*plot_ys_levelset['x'][idxs].reshape(-1,2).T, alpha=traj_alpha, c='C0', label=label)
# red dot to mark start of each trajectory
pl.plot(*plot_ys_levelset['x'][idxs, 0, :].T, '. ', c='red')
# indices of trajectories drawn so far.
drawn_idx = np.array([])
for v_lower, v_upper in zip(vs_levelsets[:-1], vs_levelsets[1:]):
# yfs at lower value level v0
# yfs = jax.vmap(lambda sol: sol.evaluate(v_lower))(sols)
# trajectories from v0 to v1 (with distribution of last traj batch!)
# sols_partial = solve_fast(yfs, v_upper)
# again, remesh to get uniform distr on upper level set.
if v_lower == vs_levelsets[0]:
# in initial round, draw everything, up to v_upper.
idx_uniform_upper = remesh_idx(sols, v_upper)
idx_uniform_upper_subsampled = idx_uniform_upper[::subsample]
plot_trajs(idx_uniform_upper_subsampled, v_lower, v1)
drawn_idx = idx_uniform_upper_subsampled
else:
drawn_xs_lower = jax.vmap(lambda sol: sol.evaluate(v_lower))(sols)['x'][drawn_idx]
drawn_xs_upper = jax.vmap(lambda sol: sol.evaluate(v_upper))(sols)['x'][drawn_idx]
all_xs_upper = jax.vmap(lambda sol: sol.evaluate(v_upper))(sols)['x']
# pl.plot(*drawn_xs_upper.T, '. ', c='red')
# pl.plot(*all_xs_upper.T, '. ', c='green', alpha=0.1)
# find nice looking trajectories to draw here...
rolled_xs_upper = np.roll(all_xs_upper, -1, axis=0)
neighbor_dists = np.linalg.norm(all_xs_upper - rolled_xs_upper, axis=1)
arclengths_upper = np.cumsum(neighbor_dists)
arclengths_upper_drawn = arclengths_upper[drawn_idx]
dists = np.diff(arclengths_upper_drawn)
# let's say twice the median is acceptable
half = dists.shape[0] // 2
min_dist = dists.sort()[half] * 1.5
new_idx = np.array([], dtype=int)
for idx_a, idx_b in zip(drawn_idx[:-1], drawn_idx[1:]):
a = arclengths_upper[idx_a]
b = arclengths_upper[idx_b]
dist = b - a
if dist > min_dist:
# if it fits between 1 and 2 times, we want 3 pts, then we remove edges so 1 left.
# checks out
N_new_pts = int(dist / min_dist + 1) + 1
print(f'adding {N_new_pts-2} new pts')
new_arclens = np.linspace(a, b, N_new_pts)[1:-1]
# find uniformly spaced pts between arclengths a and b.
# we have a monotonous function from idx to arclength (arclengths_upper).
# we want to invert that function and evaluate the inverse at some points.
# this is what interp can do easily, just swap y and x.
new_idx_float = np.interp(new_arclens, arclengths_upper, np.arange(arclengths_upper.shape[0]))
new_idx = np.concatenate([new_idx, (new_idx_float + 0.5).astype(int)])
plot_trajs(new_idx, v_lower, v1)
drawn_idx = np.concatenate([drawn_idx, new_idx]).sort()
pl.legend()
fig.tight_layout()
pl.savefig(f'./{fig_dir}/trajectories_remeshing.{fig_format}', dpi=dpi)
if show:
pl.show()
# }}}
# levelset intersection calculation definition {{{
if plot_levelsets:
def find_self_intersection(xs):
# given a closed curve in 2d space, return all points where it intersects itself.
# absolutely brute force. no apologies.
# first, we want all pairs of neighboring points.
first_idx = np.arange(xs.shape[0])
second_idx = np.roll(first_idx, -1)
# we want to know if the line segment between
lfirst = xs[first_idx]
lsecond = xs[second_idx]
rfirst = xs[first_idx]
rsecond = xs[second_idx]
# instead try simpler method. compute all distances between points,
# find closest ones.
# pairwise distance of all points.
idx = first_idx
point_dists = np.linalg.norm(xs[:, None, :] - xs[None, :, :], axis=-1)
# "index distance" but mapped to a circle to respect circular nature.
thetas = np.linspace(0, 2*np.pi, xs.shape[0])
# scaled so that distance between indices is still about 1.
circle = jax.vmap(lambda t: np.array([np.sin(t), np.cos(t)]))(thetas)
idx_dists = np.linalg.norm(circle[:, None, :] - circle[None, :, :], axis=-1)
# find the one with smallest point_dist over idx_dist. small offset to
# avoid huge numbers.
dist_ratios = point_dists / (0.001 + idx_dists)
# only upper triangular part to remove duplicates (a, b) = (b, a)
dist_ratios = np.triu(dist_ratios, 1)
dist_ratios = np.where(dist_ratios == 0, np.inf, dist_ratios)
# "remove" points closer to 10 in index distance.
min_idx_dist = 10 * (xs.shape[0] / 1024)
min_circle_dist = (min_idx_dist / xs.shape[0]) * 2*np.pi
dist_ratios = np.where(idx_dists < min_circle_dist, np.inf, dist_ratios)
first_intersection = np.unravel_index(np.argmin(dist_ratios), dist_ratios.shape)
first_dist = point_dists[first_intersection]
# then, throw out everything close to these indices and try again.
dist_ratios_old = dist_ratios
dist_ratios = dist_ratios + (np.inf * (np.abs(first_idx - first_intersection[0]) < min_idx_dist)[None, :])
dist_ratios = dist_ratios + (np.inf * (np.abs(first_idx - first_intersection[1]) < min_idx_dist)[None, :])
dist_ratios = dist_ratios + (np.inf * (np.abs(first_idx - first_intersection[0]) < min_idx_dist)[:, None])
dist_ratios = dist_ratios + (np.inf * (np.abs(first_idx - first_intersection[1]) < min_idx_dist)[:, None])
second_intersection = np.unravel_index(np.argmin(dist_ratios), dist_ratios.shape)
second_dist = point_dists[second_intersection]
# rather miss a collision than show a wrong one. the edge cases we can
# just brush under the rug & show a figure without them.
if first_dist > 0.005 or second_dist > 0.005:
return None, None, None, None
# pl.figure('ratios')
# pl.subplot(121); pl.imshow(dist_ratios_old)
# pl.subplot(122); pl.imshow(dist_ratios)
# pl.figure('curves')
# pl.plot(*xs.T, '.-', alpha=.3)
# pl.plot(*xs[np.array(first_intersection)].T, '. ', c='red')
# pl.plot(*xs[np.array(second_intersection)].T, '. ', c='red')
idx = np.concatenate([np.array(first_intersection), np.array(second_intersection)]).sort()
# 'clean' those indices by removing ones that are too close.
# -> not needed anymore, by construction we only have 4 of them.
# so now it looks like we half-reliably find those intersection points.
# what to do now?
segments = np.split(xs, idx)
segments[-1] = np.concatenate([segments[-1], segments[0]], axis=0)
segments.pop(0)
# now, any old heuristic for finding out which ones are optimal will
# do. attempt 1: largest and smallest mean magnitude?
mean_mags = np.array([np.linalg.norm(seg, axis=-1).mean() for seg in segments])
min_seg = segments[np.argmin(mean_mags)]
max_seg = segments[np.argmax(mean_mags)]
# add the first point last again to wrap
min_seg = min_seg[np.arange(min_seg.shape[0] + 1)]
max_seg = max_seg[np.arange(max_seg.shape[0] + 1)]
# pl.figure('curves')
# pl.plot(*min_seg.T, '.-', c='orange')
# pl.plot(*max_seg.T, '.-', c='orange')
# pl.show()
return min_seg, max_seg, xs[first_intersection[0]], xs[second_intersection[0]]
def plot_levelset_intersect(v, grey=False):
ys = jax.vmap(lambda sol: sol.evaluate(v))(sols)
xs = ys['x']
seg_a, seg_b, xa, xb = find_self_intersection(xs)
if seg_a is None or seg_b is None:
seg_a = xs
seg_b = xs * np.nan
if grey:
color = 'black'
else:
viridis = matplotlib.colormaps['viridis']
color = viridis(v / levels[-1])
pl.plot(*seg_a.T, alpha=levelset_alpha, color = color)
pl.plot(*seg_b.T, alpha=levelset_alpha, color = color)
return xa, xb
# }}}
# intersecting level sets plot {{{
fig = pl.figure('levelsets', figsize=(pagewidth, 0.4*pagewidth), dpi=dpi)
exp = 0.75 # between sqrt and linear. looks nicest
vs_plot = np.linspace((vf*50)**exp, vmax**exp, 20)**(1/exp)
v_uppers = (300, np.inf)
ax = None
for k in range(2):
ax = pl.subplot(131 + k, sharex=ax, sharey=ax)
pl.axis('off')
ax.set_aspect('equal')
for v in vs_plot:
if v < v_uppers[k]:
plot_levelset(v)
# uniform-ish time grid for all sols.
ys = jax.vmap(lambda sol: jax.vmap(sol.evaluate)(np.linspace(np.sqrt(sol.t0+0.0001), np.sqrt(sol.t1-0.01), 128)**2))(sols)
# vs_plot = np.linspace(vf, vmax, 21)
# v_uppers = (300, 340, np.inf)
ax = pl.subplot(133, sharex=ax, sharey=ax)
ax.set_aspect('equal')
pl.axis('off')
for v in vs_plot:
if v < v_uppers[k]:
print(v)
if v < v_uppers[0]:
plot_levelset(v)
else:
xa, xb = plot_levelset_intersect(v)
# if xa is not None and xb is not None:
# intersecs.append(xa)
# intersecs.append(xb)
# do it again for the intersections at finer resolution
pl.figure('shit') # needed so other one is not cluttered
sqrtspace = lambda a, b, n: np.linspace(np.sqrt(a), np.sqrt(b), n)**2
print('second round')
intersecs = []
intersec_vs = []
vs = 315 + sqrtspace(0, vmax-315, 30)
vs = np.concatenate([vs, vs_plot[vs_plot>315]]).sort()
for v in vs:
xa, xb = plot_levelset_intersect(v)
if xa is not None and xb is not None:
intersecs.append(xa)
intersecs.append(xb)
intersec_vs.append(v)
intersec_vs.append(v)
intersecs = np.array(intersecs)
# pl.plot(*intersecs.T, '. ', c='red')
pl.clf()
# now, sort this 'intersecs' array appropriately.
# the broad direction of the line. worked haha :)
ks = intersecs @ np.array([1, 1])
idx_sorted = np.argsort(ks)
intersec_vs_sorted = np.array(intersec_vs)[idx_sorted]
intersecs_sorted = intersecs[idx_sorted]
pl.figure('levelsets')
pl.plot(*intersecs[idx_sorted].T, alpha=1., c='red')
fig.tight_layout()
pl.savefig(f'./{fig_dir}/levelsets.{fig_format}', bbox_inches='tight', dpi=dpi)
if show:
pl.show()
# eeeh fuck it do it again for the second figure.
arrows=False
numbers=False
fig2 = pl.figure('levelsets_fine', figsize=(pagewidth, 0.65*pagewidth), dpi=dpi)
fine_v_levels = vs_plot[-6:]
for i in range(6):
print(i)
v_upper = fine_v_levels[i]
ax = pl.subplot(231 + i)
ax.set_aspect('equal')
pl.axis('off')
for v in vs_plot:
if v <= v_upper:
if v < 315:
plot_levelset(v)
else:
xa, xb = plot_levelset_intersect(v)
intersecs_partial = intersecs_sorted + np.nan * (intersec_vs_sorted > v+0.01)[:, None]
pl.plot(*intersecs_partial.T, alpha=1., c='red')
if arrows:
ax_whole = pl.figure('levelsets_fine').add_subplot(111)
ax_whole.axis("off")
# lots of trial & error for this...
x = np.array([.975, 2.030, .975, 2.030])
y = np.array([1.55, 1.55, 0.470, 0.470])
# and a last one right in the middle
x = np.concatenate([x, np.array([np.mean(x)])])
y = np.concatenate([y, np.array([np.mean(y)])])
u = np.array([1, 1, 1, 1, -2])/10
v = np.array([0, 0, 0, 0, -0.6])/10
pl.quiver(x, y, u, v, pivot='mid', width=0.01, headlength=3, headaxislength=3,
alpha=.3, units='xy', angles='xy', scale_units='xy', scale=1)
pl.xlim([0, 3])
pl.ylim([0, 2])
fig.tight_layout()
pl.savefig(f'./{fig_dir}/levelsets_fine.{fig_format}', bbox_inches='tight', dpi=dpi)
if show:
pl.show()
ipdb.set_trace()
# }}}
# results plot {{{
if plot_results:
# no point in not hardcoding here...
fpath = os.path.join(data_dir, f'orbits_{run_id}_controlcosts_2d.msgpack.gz')
with gzip.open(fpath, 'rb') as f:
bs = f.read()
eval_outputs = jtm(np.array, flax.serialization.msgpack_restore(bs))
# here we kinda have to be smart to compare the reference sol in the right
# way...
# also generally, what do we plot?
# learned value? closed loop trajectories?
# ref trajectories?
def imshow_like_contourf(xx, yy, vals, **kwargs):
extent = (xx.min(), xx.max(), yy.min(), yy.max())
img = vals[::-1] # flip in vertical axis
if 'levels' in kwargs:
levels = kwargs['levels']
vmin, vmax = levels[0], levels[-1]
pl.imshow(img, vmin=vmin, vmax=vmax, extent=extent)
else:
pl.imshow(img, extent=extent)
xx = eval_outputs['xx']
yy = eval_outputs['yy']
learned_v = eval_outputs['v_mean']
controlcost = eval_outputs['controlcost']
# ax = pl.subplot(121)
# ax.set_aspect('equal')
# levels = np.linspace(-2.2, 3., 30)
# pl.contour(xx, yy, np.log10(learned_v), levels=levels)
# pl.xlabel('learned v, contour')
learned_v_too_high = learned_v > levels[-1]
learned_v_masked = np.where(learned_v_too_high, np.nan, learned_v)
# pl.subplot(121)
# ax.set_aspect('equal')
# imshow_like_contourf(xx, yy, np.log10(learned_v_masked), levels=levels)
# pl.colorbar()
# pl.xlabel('learned cost')
fig = pl.figure('orbits_results', figsize=(pagewidth, 0.4*pagewidth))
ax = pl.subplot(121)
# imshow_like_contourf(xx, yy, learned_v_masked)
ax.set_aspect('equal')
pl.xlim([-1.7, 1.9]); pl.ylim([-1.8, 1.8])
pl.contourf(xx, yy, learned_v, levels=np.arange(0, vmax+1, 20))
pl.colorbar()
pl.xlabel('$x_1$')
pl.ylabel('$x_2$')
ax.set_title('Learned mean value function $\mu_\\boldsymbol{\\Theta}$')
# pl.xlabel('Mean value $\mu_{\\boldsymbol{\Theta}}$')
# and the most interesting thing finally: control cost vs 'reference'
# solution. was again too much work to do that. would have been cool, maybe
# later \o/ but i guess visually comparing with the level sets of the ref
# sol should be adequate too.
# unwrap the angle.
sqrtspace = lambda a, b, n: np.linspace(np.sqrt(a), np.sqrt(b), n)**2
vs_remesh = np.logspace(np.log10(vf), np.log10(vmax), 200)
vs_remesh_lin = np.linspace(vf, vmax, 200)
vs_remesh = sqrtspace(vf, vmax, 200)
ys_remeshed = jax.vmap(lambda sol: jax.vmap(sol.evaluate)(vs_remesh))(sols)
xs = ys_remeshed['x']
# xs = np.where(xs == np.inf, np.nan, xs)
phis = np.arctan2(xs[:, :, 0], xs[:, :, 1])
phis = np.unwrap(phis, axis=1)
xs = ys_remeshed['x'].reshape(-1, 2)
phis = phis.reshape(-1)
vs = ys_remeshed['v'].reshape(-1)
vxs = ys_remeshed['vx'].reshape(-1, 2)
# transform to repr where solution is unique: polar.
zs = np.column_stack([
np.linalg.norm(xs, axis=1),
phis,
])
@jax.jit
def v_ref(x):
# this uses <gasp> GLOBAL VARIABLES xs, phis, vs, vxs, defined just
# above. if you redefine those in any way, this will probably break.
phis = np.arctan2(x[0], x[1]) + np.arange(-1, 2) * 2 * np.pi
def v_local(phi):
# find min distance in polar coordinates.
z = np.array([np.linalg.norm(x), phi])
dists = np.linalg.norm(zs - z[None, :], axis=1)
closest_idx = np.argmin(dists)
closest_dist = dists[closest_idx]
# do 1st order taylor approx in cartesian coords.
closest_v = vs[closest_idx]
closest_x = xs[closest_idx]
closest_vx = vxs[closest_idx]
v = closest_v + closest_vx @ (x - closest_x)
return v, closest_dist
# select the best solution, but only if "within" data.
v_candidates, dists = jax.lax.map(v_local, phis)
is_invalid = dists > 0.2
v_candidates = v_candidates + np.inf * is_invalid
return np.min(v_candidates)
# so this works now :)
# what do we do?
vref_fpath = os.path.join(data_dir, 'v_refs.msgpack.gz')
# store v_ref results bc that takes ages
if os.path.isfile(vref_fpath):
print('reading existing vref data')
with gzip.open(vref_fpath, 'rb') as f:
bs = f.read()
vref_data = flax.serialization.msgpack_restore(bs)
if not ( (xx == vref_data['xx']).all() and (yy == vref_data['yy']).all()):
print('different grid. you may want to regenerate vref data')
xx = vref_data['xx']
yy = vref_data['yy']
v_refs = vref_data['v']
else:
print('calculating & saving vref data')
states = np.column_stack([xx.flatten(), yy.flatten()])
print('starting v_refs calculation')
v_refs = jax.lax.map(v_ref, states).reshape(xx.shape)
v_ref_data = {
'xx': xx,
'yy': yy,
'v': v_refs,
}
bs = flax.serialization.msgpack_serialize(v_ref_data)
with gzip.open(vref_fpath, 'wb') as f:
f.write(bs)
# learned cost / optimal cost
# ax = pl.subplot(132, sharex=ax, sharey=ax)
# ax.set_aspect('equal')
# ratio = v_refs / learned_v_masked
# imshow_like_contourf(xx, yy, np.log10(ratio), cmap='plasma')
# pl.plot(*intersecs[idx_sorted].T, alpha=1., c='red')
# pl.colorbar() # TODO horizontal one?
# pl.xlabel('log10(Optimal cost / learned cost)')
# plot: closed loop cost / reference cost.
ax = pl.subplot(122, sharex=ax, sharey=ax)
ax.set_aspect('equal')
# anti aliasing here? would involve
# - transforming to RGB using cmap manually
# - adding alpha channel and doing corresponding fadeout
ratio = controlcost / v_refs + np.inf * learned_v_too_high
imshow_like_contourf(xx, yy, np.log10(ratio), cmap='plasma')
# pl.plot(*intersecs[idx_sorted].T, alpha=1., c='red')
pl.colorbar()
# pl.xlabel('log10(Closed-loop cost / optimal cost)')
pl.xlabel('$x_1$')
pl.ylabel('$x_2$')
ax.set_title('$\\text{log}_{10} \\left( \\frac{V^\\text{cl}_\Theta(x)}{V_\\text{ref}(x)} \\right)$')
fig.tight_layout()
pl.savefig(f'./{fig_dir}/orbits_results.{fig_format}', bbox_inches='tight', dpi=dpi)
if show:
pl.show()
fig = pl.figure('orbits_results_stats', figsize=(pagewidth, 0.4*pagewidth))
pl.subplot(121)
rel_suboptimality = (controlcost / v_refs - 1)[~learned_v_too_high]
pl.semilogy(learned_v[~learned_v_too_high], rel_suboptimality, '. ', alpha=scatter_alpha)
pl.xlabel('Mean value $\mu_{\\boldsymbol{\Theta}}$')
pl.ylabel('Relative suboptimality')
pl.grid('on')
pl.ylim([1e-4, 1e2])
pl.subplot(122)
pl.semilogx(rel_suboptimality.sort(), np.linspace(0, 1, rel_suboptimality.shape[0]))
pl.grid('on')
pl.xlim([1e-4, 1e1])
pl.xlabel('r')
pl.ylabel('P(Relative suboptimality $\leq$ r)')
fig.tight_layout()
pl.savefig(f'./{fig_dir}/orbits_results_stats.{fig_format}', bbox_inches='tight', dpi=dpi)
fig = pl.figure('orbits_results_lines', figsize=(pagewidth, 0.4*pagewidth))
def plot_y_line(y_value):
y_idx = np.argmin((yy[:, 0] - y_value)**2)
x_plot = (xx + np.nan * learned_v_too_high)[y_idx, :]
lower = eval_outputs['v_mean'][y_idx, :] - sigs * eval_outputs['v_stds'][y_idx, :]
upper = eval_outputs['v_mean'][y_idx, :] + sigs * eval_outputs['v_stds'][y_idx, :]
pl.plot(x_plot, eval_outputs['v_mean'][y_idx, :], label='Mean value $\mu_{\\boldsymbol{\Theta}}$', c='C0')
pl.fill_between(x_plot, lower, upper,
label='Confidence $\mu_{\\boldsymbol{\Theta}} \pm ' + str(sigs) + '\sigma_{\\boldsymbol{\Theta}}$',
color='C0', alpha=confidence_band_alpha)
pl.plot(x_plot, controlcost[y_idx, :], c='C1', label='Closed loop cost $V^\\text{cl}_{\\boldsymbol{\Theta(x)}}$')
pl.plot(x_plot, v_refs[y_idx, :], c='C2', label='Reference cost $V_\\text{ref}(x)$')
pl.ylim([0, 420])
pl.xlabel(f'$x_1 \ (x_2 = {y_value:.1f})$')
pl.ylabel('Value')
pl.legend()
pl.subplot(121)
plot_y_line(0.7)
pl.subplot(122)
plot_y_line(-0.7)
fig.tight_layout()
pl.savefig(f'./{fig_dir}/orbits_results_lines.{fig_format}', bbox_inches='tight', dpi=dpi)
if show:
pl.show()
ipdb.set_trace()
# other figure with cost cdf like other examples?
# }}}