-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
514 lines (470 loc) · 23.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
from __future__ import print_function
import argparse
import os
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from model.resnet import resnet34
from model.basenet import AlexNetBase, VGGBase, Predictor, Predictor_deep, Predictor_deep_attributes, Predictor_attributes
from utils.utils import weights_init, save_mymodel, save_checkpoint
from utils.lr_schedule import inv_lr_scheduler
from utils.return_dataset import return_dataset
from utils.loss import entropy, adentropy, FocalLoss, CBFocalLoss
from utils.custom_loss import regularizer
import time
from datetime import datetime
def main():
# Training settings
parser = argparse.ArgumentParser(description='SSDA Classification')
parser.add_argument('--steps', type=int, default=50000, metavar='N',
help='maximum number of iterations '
'to train (default: 50000)')
parser.add_argument('--method', type=str, default='MME',
choices=['S+T', 'ENT', 'MME'],
help='MME is proposed method, ENT is entropy minimization,'
' S+T is training only on labeled examples')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.001)')
parser.add_argument('--multi', type=float, default=0.1, metavar='MLT',
help='learning rate multiplication')
parser.add_argument('--T', type=float, default=0.05, metavar='T',
help='temperature (default: 0.05)')
parser.add_argument('--lamda', type=float, default=0.1, metavar='LAM',
help='value of lamda')
parser.add_argument('--save_check', action='store_true', default=False,
help='save checkpoint or not')
parser.add_argument('--checkpath', type=str, default='./save_model_ssda',
help='dir to save checkpoint')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging '
'training status')
parser.add_argument('--save_interval', type=int, default=500, metavar='N',
help='how many batches to wait before saving a model')
parser.add_argument('--net', type=str, default='al exnet',
help='which network to use')
parser.add_argument('--source', type=str, default='real',
help='source domain')
parser.add_argument('--target', type=str, default='sketch',
help='target domain')
parser.add_argument('--dataset', type=str, default='multi',
help='the name of dataset')
parser.add_argument('--num', type=int, default=3,
help='number of labeled examples in the target')
parser.add_argument('--patience', type=int, default=5, metavar='S',
help='early stopping to wait for improvment '
'before terminating. (default: 5 (5000 iterations))')
parser.add_argument('--early', action='store_false', default=True,
help='early stopping on validation or not')
parser.add_argument('--loss',type=str, default='CE',choices=['CE', 'FL','CBFL'],
help='classifier loss function')
parser.add_argument('--beta',type=float, default=0.99,required=False,
help='beta value in CBFL loss')
parser.add_argument('--gamma',type=float, default=0.5,required=False,
help='gamma value in CBFL or FL')
parser.add_argument('--reg',type=float, default=0.1,required=False,
help='weight of semantic regularizer')
parser.add_argument('--attribute', type = str, default = None,
help='semantic attribute feature vector to be used')
parser.add_argument('--dim', type=int, default=50,
help='dimensionality of the feature vector - make sure this in sync with the dim of the semantic attribute vector')
parser.add_argument('--mode', type=str, default='train', choices=['train', 'infer'], help = 'mode of script train or infer')
# this argument is valid only if the mode is infer
parser.add_argument('--model_path', type=str, help = 'path to the checkpoint of the model')
parser.add_argument('--uda', type=int, default = 0, help = 'unsupervised domain adaptation or not - 0 for ssda and 1 for uda')
args = parser.parse_args()
print('Dataset %s Source %s Target %s Labeled num perclass %s Network %s' %
(args.dataset, args.source, args.target, args.num, args.net))
source_loader, target_loader, target_loader_unl, target_loader_val, \
target_loader_test, class_num_list, class_list = return_dataset(args) # class num list is returned for CBFL
use_gpu = torch.cuda.is_available()
record_dir = 'record/%s/%s' % (args.dataset, args.method)
if not os.path.exists(record_dir):
os.makedirs(record_dir)
record_file = os.path.join(record_dir,
'%s_net_%s_%s_to_%s_num_%s' %
(args.method, args.net, args.source,
args.target, args.num))
if use_gpu:
device = 'cuda'
else:
device = 'cpu'
print("Device: %s Loss: %s Attributes: %s"%(device,args.loss,args.attribute))
if use_gpu:
torch.cuda.manual_seed(args.seed)
else:
torch.manual_seed(args.seed)
if args.net == 'resnet34':
G = resnet34()
inc = 512
elif args.net == "alexnet":
G = AlexNetBase()
inc = 4096
elif args.net == "vgg":
G = VGGBase()
inc = 4096
else:
raise ValueError('Model cannot be recognized.')
params = []
for key, value in dict(G.named_parameters()).items():
if value.requires_grad:
if 'classifier' not in key:
params += [{'params': [value], 'lr': 0.1,
'weight_decay': 0.0005}]
else:
params += [{'params': [value], 'lr': 1,
'weight_decay': 0.0005}]
# Setting the predictor layer
if args.attribute is not None:
if args.net == 'resnet34':
F1 = Predictor_deep_attributes(num_class=len(class_list),inc=inc,feat_dim = args.dim)
print("Using: Predictor_deep_attributes")
else:
F1 = Predictor_attributes(num_class=len(class_list),inc=inc,feat_dim = args.dim)
print("Using: Predictor_attributes")
else:
if args.net == 'resnet34':
F1 = Predictor_deep(num_class=len(class_list),inc=inc)
print("Using: Predictor_deep")
else:
F1 = Predictor(num_class=len(class_list), inc=inc, temp=args.T)
print("Using: Predictor")
# Initializing the weights of the prediction layer
weights_init(F1)
# Setting the prediction layer weights as the semantic attributes
if args.attribute is not None:
att = np.load('attributes/%s_%s.npy'%(args.dataset,args.attribute))
#att = np.load('attributes/multi_%s.npy'%(args.attribute))
if use_gpu:
att = nn.Parameter(torch.cuda.FloatTensor(att))
else:
att = nn.Parameter(torch.FloatTensor(att,device = "cpu"))
if args.net == 'resnet34':
F1.fc3.weight = att
else:
F1.fc2.weight = att
print("attribute shape is: ", att.shape)
lr = args.lr
# If the mode is inference then load the pretrained network
if args.mode == 'infer':
# loading the model checkpoint
main_dict = torch.load(args.model_path)
G.load_state_dict(main_dict['G_state_dict'])
F1.load_state_dict(main_dict['F_state_dict'])
print("Loaded pretrained model weights")
G.to(device)
F1.to(device)
if args.uda == 1:
print("Using: Unsupervised domain adaptation")
im_data_s = torch.FloatTensor(1)
im_data_t = torch.FloatTensor(1)
im_data_tu = torch.FloatTensor(1)
gt_labels_t = torch.LongTensor(1)
gt_labels_s = torch.LongTensor(1)
sample_labels_t = torch.LongTensor(1)
sample_labels_s = torch.LongTensor(1)
im_data_s = im_data_s.to(device)
im_data_t = im_data_t.to(device)
im_data_tu = im_data_tu.to(device)
gt_labels_s = gt_labels_s.to(device)
gt_labels_t = gt_labels_t.to(device)
sample_labels_t = sample_labels_t.to(device)
sample_labels_s = sample_labels_s.to(device)
im_data_s = Variable(im_data_s)
im_data_t = Variable(im_data_t)
im_data_tu = Variable(im_data_tu)
gt_labels_s = Variable(gt_labels_s)
gt_labels_t = Variable(gt_labels_t)
sample_labels_t = Variable(sample_labels_t)
sample_labels_s = Variable(sample_labels_s)
if os.path.exists(args.checkpath) == False:
os.mkdir(args.checkpath)
time_stamp = datetime.now()
print(time_stamp)
def train(class_dist_threshold_list):
G.train()
F1.train()
optimizer_g = optim.SGD(params, momentum=0.9,
weight_decay=0.0005, nesterov=True)
optimizer_f = optim.SGD(list(F1.parameters()), lr=1.0, momentum=0.9,
weight_decay=0.0005, nesterov=True)
def zero_grad_all():
optimizer_g.zero_grad()
optimizer_f.zero_grad()
param_lr_g = []
for param_group in optimizer_g.param_groups:
param_lr_g.append(param_group["lr"])
param_lr_f = []
for param_group in optimizer_f.param_groups:
param_lr_f.append(param_group["lr"])
# Setting the loss function to be used for the classification loss
if args.loss == 'CE':
criterion = nn.CrossEntropyLoss().to(device)
if args.loss == 'FL':
criterion = FocalLoss(alpha = 1, gamma = args.gamma).to(device)
if args.loss == 'CBFL':
# Calculating the list having the number of examples per class which is going to be used in the CB focal loss
beta = args.beta
effective_num = 1.0 - np.power(beta, class_num_list)
per_cls_weights = (1.0 - beta) / np.array(effective_num)
per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(class_num_list)
per_cls_weights = torch.FloatTensor(per_cls_weights).to(device)
criterion = CBFocalLoss(weight=per_cls_weights, gamma=args.gamma).to(device)
all_step = args.steps
data_iter_s = iter(source_loader)
data_iter_t = iter(target_loader)
data_iter_t_unl = iter(target_loader_unl)
len_train_source = len(source_loader)
len_train_target = len(target_loader)
len_train_target_semi = len(target_loader_unl)
best_acc = 0
counter = 0
"""
x = torch.load("./freezed_models/alexnet_p2r.ckpt.best.pth.tar")
G.load_state_dict(x['G_state_dict'])
F1.load_state_dict(x['F1_state_dict'])
optimizer_f.load_state_dict(x['optimizer_f'])
optimizer_g.load_state_dict(x['optimizer_g'])
"""
reg_weight = args.reg
for step in range(all_step):
optimizer_g = inv_lr_scheduler(param_lr_g, optimizer_g, step,
init_lr=args.lr)
optimizer_f = inv_lr_scheduler(param_lr_f, optimizer_f, step,
init_lr=args.lr)
lr = optimizer_f.param_groups[0]['lr']
# condition for restarting the iteration for each of the data loaders
if step % len_train_target == 0:
data_iter_t = iter(target_loader)
if step % len_train_target_semi == 0:
data_iter_t_unl = iter(target_loader_unl)
if step % len_train_source == 0:
data_iter_s = iter(source_loader)
data_t = next(data_iter_t)
data_t_unl = next(data_iter_t_unl)
data_s = next(data_iter_s)
with torch.no_grad():
im_data_s.resize_(data_s[0].size()).copy_(data_s[0])
gt_labels_s.resize_(data_s[1].size()).copy_(data_s[1])
im_data_t.resize_(data_t[0].size()).copy_(data_t[0])
gt_labels_t.resize_(data_t[1].size()).copy_(data_t[1])
im_data_tu.resize_(data_t_unl[0].size()).copy_(data_t_unl[0])
zero_grad_all()
if args.uda == 1:
data = im_data_s
target = gt_labels_s
else:
data = torch.cat((im_data_s, im_data_t), 0)
target = torch.cat((gt_labels_s, gt_labels_t), 0)
#print(data.shape)
output = G(data)
out1 = F1(output)
if args.attribute is not None:
if args.net == 'resnet34':
reg_loss = regularizer(F1.fc3.weight,att)
loss = criterion(out1, target) + reg_weight * reg_loss
else:
reg_loss = regularizer(F1.fc2.weight,att)
loss = criterion(out1, target) + reg_weight * reg_loss
else:
reg_loss = torch.tensor(0)
loss = criterion(out1, target)
if args.attribute is not None:
if step%args.save_interval == 0 and step!=0:
reg_weight = 0.5 * reg_weight
print("Reduced Reg weight to: ", reg_weight)
loss.backward(retain_graph=True)
optimizer_g.step()
optimizer_f.step()
zero_grad_all()
if not args.method == 'S+T':
output = G(im_data_tu)
if args.method == 'ENT':
loss_t = entropy(F1, output, args.lamda)
#print(loss_t.cpu().data.item())
loss_t.backward()
optimizer_f.step()
optimizer_g.step()
elif args.method == 'MME':
loss_t = adentropy(F1, output,args.lamda,class_dist_threshold_list)
loss_t.backward()
optimizer_f.step()
optimizer_g.step()
else:
raise ValueError('Method cannot be recognized.')
log_train = 'S {} T {} Train Ep: {} lr{} \t ' \
'Loss Classification: {:.6f} Reg: {:.6f} Loss T {:.6f} ' \
'Method {}\n'.format(args.source, args.target,
step, lr, loss.data, reg_weight*reg_loss.data,
-loss_t.data, args.method)
else:
log_train = 'S {} T {} Train Ep: {} lr{} \t ' \
'Loss Classification: {:.6f} Reg: {:.6f} Method {}\n'.\
format(args.source, args.target,
step, lr, loss.data, reg_weight * reg_loss.data,
args.method)
G.zero_grad()
F1.zero_grad()
zero_grad_all()
if step % args.log_interval == 0:
print(log_train)
if step % args.save_interval == 0 and step > 0:
loss_val, acc_val = test(target_loader_val)
loss_test, acc_test = test(target_loader_test)
G.train()
F1.train()
if acc_val >= best_acc:
best_acc = acc_val
best_acc_test = acc_test
counter = 0
else:
counter += 1
if args.early:
if counter > args.patience:
break
print('best acc test %f best acc val %f' % (best_acc_test,
acc_val))
print('record %s' % record_file)
with open(record_file, 'a') as f:
f.write('step %d best %f final %f \n' % (step,
best_acc_test,
acc_val))
G.train()
F1.train()
#saving model as a checkpoint dict having many things
if args.save_check:
print('saving model')
is_best = True if counter==0 else False
save_mymodel(args, {
'step': step,
'arch': args.net,
'G_state_dict': G.state_dict(),
'F1_state_dict': F1.state_dict(),
'best_acc_test': best_acc_test,
'optimizer_g' : optimizer_g.state_dict(),
'optimizer_f' : optimizer_f.state_dict(),
}, is_best, time_stamp)
# defining the function for in training validation and testing
def test(loader):
G.eval()
F1.eval()
test_loss = 0
correct = 0
size = 0
num_class = len(class_list)
output_all = np.zeros((0, num_class))
# Setting the loss function to be used for the classification loss
if args.loss == 'CE':
criterion = nn.CrossEntropyLoss().to(device)
if args.loss == 'FL':
criterion = FocalLoss(alpha = 1, gamma = args.gamma).to(device)
if args.loss == 'CBFL':
# Calculating the list having the number of examples per class which is going to be used in the CB focal loss
beta = args.beta
effective_num = 1.0 - np.power(beta, class_num_list)
per_cls_weights = (1.0 - beta) / np.array(effective_num)
per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(class_num_list)
per_cls_weights = torch.FloatTensor(per_cls_weights).to(device)
criterion = CBFocalLoss(weight=per_cls_weights, gamma=args.gamma).to(device)
confusion_matrix = torch.zeros(num_class, num_class)
with torch.no_grad():
for batch_idx, data_t in enumerate(loader):
im_data_t.data.resize_(data_t[0].size()).copy_(data_t[0])
gt_labels_t.data.resize_(data_t[1].size()).copy_(data_t[1])
feat = G(im_data_t)
output1 = F1(feat)
output_all = np.r_[output_all, output1.data.cpu().numpy()]
size += im_data_t.size(0)
pred1 = output1.data.max(1)[1]
for t, p in zip(gt_labels_t.view(-1), pred1.view(-1)):
confusion_matrix[t.long(), p.long()] += 1
correct += pred1.eq(gt_labels_t.data).cpu().sum()
test_loss += criterion(output1, gt_labels_t) / len(loader)
np.save("cf_target.npy",confusion_matrix)
#print(confusion_matrix)
print('\nTest set: Average loss: {:.4f}, '
'Accuracy: {}/{} F1 ({:.0f}%)\n'.
format(test_loss, correct, size,
100. * correct / size))
return test_loss.data, 100. * float(correct) / size
# defining the function for inference which is similar to the testing function as above but with some additional functionality for calculating the distances between the class prototypes and the predicted testing samples
def infer(loader):
G.eval()
F1.eval()
test_loss = 0
correct = 0
size = 0
num_class = len(class_list)
output_all = np.zeros((0, num_class))
# Setting the loss function to be used for the classification loss
if args.loss == 'CE':
criterion = nn.CrossEntropyLoss().to(device)
if args.loss == 'FL':
criterion = FocalLoss(alpha = 1, gamma = 1).to(device)
if args.loss == 'CBFL':
# Calculating the list having the number of examples per class which is going to be used in the CB focal loss
beta = 0.99
effective_num = 1.0 - np.power(beta, class_num_list)
per_cls_weights = (1.0 - beta) / np.array(effective_num)
per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(class_num_list)
per_cls_weights = torch.FloatTensor(per_cls_weights).to(device)
criterion = CBFocalLoss(weight=per_cls_weights, gamma=0.5).to(device)
# defining a nested list to store the cosine similarity (or distances) of the vectors from the class prototypes
class_dist_list = []
for i in range(num_class):
empty_dists = []
class_dist_list.append(empty_dists)
confusion_matrix = torch.zeros(num_class, num_class)
# iterating through the elements of the batch in the dataloader
with torch.no_grad():
for batch_idx, data_t in enumerate(loader):
im_data_t.data.resize_(data_t[0].size()).copy_(data_t[0])
gt_labels_t.data.resize_(data_t[1].size()).copy_(data_t[1])
feat = G(im_data_t)
output1 = F1(feat)
output_all = np.r_[output_all, output1.data.cpu().numpy()]
size += im_data_t.size(0)
pred1 = output1.data.max(1)[1]
# filling the elements of the confusion matrix
for t, p in zip(gt_labels_t.view(-1), pred1.view(-1)):
confusion_matrix[t.long(), p.long()] += 1
correct += pred1.eq(gt_labels_t.data).cpu().sum()
test_loss += criterion(output1, gt_labels_t) / len(loader)
pred1 = pred1.cpu().numpy()
dists = output1.data.max(1)[0]
dists = dists.cpu().numpy()
# forming the lists of the distances of the predicted labels and the class prototype
for label,dist in zip(pred1,dists):
label = int(label)
class_dist_list[label].append(dist)
# sorting the distances in ascending order for each of the classes, also finding a threshold for similarity of each class
summ = 0
class_dist_threshold_list = []
for class_ in range(len(class_dist_list)):
class_dist_list[class_].sort()
l = len(class_dist_list[class_])
tenth = l/10
idx_tenth = math.ceil(tenth)
class_dist_threshold_list.append(class_dist_list[class_][idx_tenth])
print('\nTest set: Average loss: {:.4f}, '
'Accuracy: {}/{} F1 ({:.2f}%)\n'.
format(test_loss, correct, size,
100. * correct / size))
return test_loss.data, 100. * float(correct) / size, class_dist_threshold_list
# choosing the mode of the model - whether to be used for training or for inference
if args.mode == 'train':
print("Training the model...")
train(None)
if args.mode == 'infer':
print("Infering from the model...")
_, _, class_dist_threshold_list = infer(target_loader_test)
print("Starting model retraining using weights for entropy maximization...")
train(class_dist_threshold_list)
# Invoking the main function here
if __name__ == "__main__":
main()