-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2_audience_genderPosition.Rmd
377 lines (298 loc) · 13.1 KB
/
2_audience_genderPosition.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
---
title: "Gender bias in audience of seminars and career position"
author: "Melina Leite & Júlia Barreto"
date: "`r format(Sys.time(), '%d de %B de %Y')`"
output:
rmdformats::readthedown:
highlight: kate
self_contained: true
thumbnails: false
lightbox: true
gallery: false
pdf_document:
highlight: tango
toc: yes
---
```{r setup, echo=FALSE, warning=FALSE, message=FALSE}
library(knitr)
library(tidyverse); library(cowplot); library(patchwork)
theme_set(theme_cowplot())
library(janitor); library(lubridate)
library(DHARMa); library(ggeffects)
library(bbmle); library(MASS);
library(performance)
library(FactoMineR); library(factoextra)
library(glmmTMB)
opts_chunk$set(fig.align = 'center', warning = FALSE, message = FALSE, error = FALSE, echo=T, cache=F)
options(formatR.arrow = TRUE, width = 90, help_type = "html")
```
# Data
Data description and summary statitiscs in script `0_data_summary`.
```{r}
load("data_clean/data_audience.Rdata")
data <- data_a
```
# Modeling
The audience (number of attendants in the seminar) is modeled by the gender (male, female), the academic level (student, postdoc, professor) of the speaker, and affirmative actions (before, after).
Negative binomial mixed-effects model with year as random intercept.
```{r}
mg0 <- glmmTMB(audience_n~ 1 + (1|year), data=data, family= nbinom2)
mg1 <- glmmTMB(audience_n~ gender + (1|year), data=data, family= nbinom2)
mg2 <- glmmTMB(audience_n~ position_cat + (1|year), data=data, family= nbinom2)
mg3 <- glmmTMB(audience_n~ affirm_action + (1|year), data=data, family= nbinom2)
mg4 <- glmmTMB(audience_n~ gender + position_cat + (1|year),
data=data, family= nbinom2)
mg5 <- glmmTMB(audience_n~ gender + affirm_action + (1|year),
data=data, family= nbinom2)
mg6 <- glmmTMB(audience_n~ affirm_action + position_cat+ (1|year),
data=data, family= nbinom2)
mg7 <- glmmTMB(audience_n~ gender * position_cat+ (1|year),
data=data, family= nbinom2)
mg8 <- glmmTMB(audience_n~ gender * affirm_action+ (1|year),
data=data, family= nbinom2)
mg9 <- glmmTMB(audience_n~ affirm_action * position_cat+ (1|year),
data=data, family= nbinom2)
mg10 <- glmmTMB(audience_n~ gender + position_cat + affirm_action + (1|year),
data=data, family= nbinom2)
mg11 <- glmmTMB(audience_n~ gender * position_cat + affirm_action + (1|year),
data=data, family= nbinom2)
mg12 <- glmmTMB(audience_n~ gender + position_cat * affirm_action + (1|year),
data=data, family= nbinom2)
mg13 <- glmmTMB(audience_n~ gender * position_cat * affirm_action + (1|year),
data=data, family= nbinom2)
AICtab(mg0,mg1,mg2, mg3, mg4,mg5,mg6,mg7,mg8,mg9,mg10,mg11,mg12,mg13, base=T,
weights=T) %>%
kable(digits=2)
```
## Residual diagnostic
Using the `DHARMa` package.
The two most plausible models presented a satisfactory residual diagnostic.
```{r}
plot(simulateResiduals(mg11))
```
```{r}
plot(simulateResiduals(mg10))
```
## Models result
The two equally plausible models for the audience included gender, academic level and affirmative actions as predictors, with the difference that the best fitted model includes an interaction of gender and academic level.
```{r echo=TRUE}
summary(mg11)
performance::r2(mg11)
```
```{r}
myg11 <- ggpredict(mg11, terms=c("position_cat","gender", "affirm_action"))
prs <- as.data.frame(myg11) %>% rename(affirm_action = facet)
colnames(prs)[1] <- "position_cat"
```
```{r, echo=F}
ggplot(data, aes(x=position_cat, y=audience_n)) +
geom_point(aes(col=gender), position = position_dodge(0.6), alpha=0.3,
size=3,show.legend = F) +
facet_grid(~affirm_action, labeller =
as_labeller(c(before = "Before Affirmative action",
after = "After Affirmative action"))) +
scale_color_manual(values = c("#6D57CF","#FCA532")) +
scale_fill_manual(name="Gender", values = c("#6D57CF","#FCA532")) +
geom_pointrange(data=prs, aes(x=position_cat, y=predicted,fill=group,
ymax=conf.high, ymin=conf.low), alpha=1,
position=position_dodge(0.6), size=1.2, shape=21, col="black") +
xlab("Academic level") + ylab("Audience (N)")
#ggsave("figures/FIG_3a_alternative.jpeg", width=8, height = 4)
```
```{r echo=TRUE}
summary(mg10)
performance::r2(mg10)
```
```{r}
myg10 <- ggpredict(mg10, terms=c("position_cat","gender", "affirm_action"))
pr10 <- as.data.frame(myg10) %>% rename(affirm_action = facet)
colnames(pr10)[1] <- "position_cat"
```
```{r Fig_S3, echo=F}
ggplot(data, aes(x=position_cat, y=audience_n)) +
geom_point(aes(col=gender), position = position_dodge(0.6), alpha=0.3,
size=3,show.legend = F) +
facet_grid(~affirm_action, labeller =
as_labeller(c(before = "Before Affirmative action",
after = "After Affirmative action"))) +
scale_color_manual(values = c("#6D57CF","#FCA532")) +
scale_fill_manual(name="Gender", values = c("#6D57CF","#FCA532")) +
geom_pointrange(data=pr10, aes(x=position_cat, y=predicted,fill=group,
ymax=conf.high, ymin=conf.low), alpha=1,
position=position_dodge(0.6), size=1.2, shape=21, col="black") +
xlab("Academic level") + ylab("Audience (N)")
ggsave("figures/FIG_S4_audience_speakers_model2.jpeg", width=8, height = 4)
```
# Only professors - productivity metrics
Investigating if differences in productivity between male and female professors and researches are related to the audience.
We measured productivity publication metrics from Google Scholar for professors and researchers.
Creating productivity index using PCA 1st axis from metrics.
## PCA productivity metrics
```{r}
dp <- data %>% filter(!is.na(data$total_citation_n),
!is.na(data$nature_index_count))
colnames(dp)[22:29] <- c("tot_cit", "h", "i10", "most_cit", "cit_cum",
"career_Y", "nature_count", "nature_share")
table(dp$gender, dp$affirm_action)
```
Productivity publication metrics
```{r}
pca1 <- PCA(dp[, c(22:29)], graph=F)
```
```{r, eval=F}
p1 <- fviz_pca_biplot(pca1, col.ind = dp$gender, addEllipses=TRUE,
col.ind.sub="none", geom="point",
repel = TRUE) +
geom_vline(xintercept = 0, linetype="dashed") +
geom_hline(yintercept = 0, linetype="dashed")+
scale_color_manual(name="Gender",values = c("#6D57CF","#FCA532"))+
scale_shape(name="Gender")+
scale_fill_manual(name="Gender",values = c("#6D57CF","#FCA532"))+
ggtitle("Productivity metrics") +
xlab("PC1 (52%)") + ylab("PC2 (21%)") +
theme_cowplot()
p1
#("figures/pca_biplot.jpeg", width=6, height = 6)
```
For the analysis specific for professor talks (N=`r length(dp$id)`), the PCA results show that all the productivity metrics for professors were highly correlated (Figure 2B) with the first axis (52% of variance explained) while the institution indexes composed the second PCA axis (21% of variation explained).
Extracting PCA 2 first axes
```{r}
dp$pc1 <- pca1$ind$coord[,1]
dp$pc2 <- pca1$ind$coord[,2]
```
## Modeling
```{r}
m0 <- glmmTMB(audience_n ~ 1 + affirm_action + (1|year), data=dp, family=nbinom2)
m1 <- glmmTMB(audience_n ~ gender + affirm_action +(1|year), data=dp,
family=nbinom2)
m2 <- glmmTMB(audience_n ~ pc1 + + affirm_action + (1|year), data=dp,
family=nbinom2)
m3 <- glmmTMB(audience_n ~ gender + pc1 + affirm_action + (1|year),
data=dp, family=nbinom2)
m4 <- glmmTMB(audience_n ~ gender*pc1 + affirm_action + (1|year),
data=dp, family=nbinom2)
AICtab(m0,m1,m2,m3,m4,
base=T, weights=T) %>% kable(digits=2)
```
## Residual diagnostic
Using the `DHARMa` package.
The two most plausible models presented a satisfactory residual diagnostic.
```{r}
plot(simulateResiduals(m3))
plot(simulateResiduals(m4))
```
## Model results
```{r echo=TRUE}
summary(m3)
performance::r2(m3)
```
We used the first PCA axis as predictors together with gender to explain the professor's audience, and found that, as expected, audience increases with productivity index (first PCA axis) but female professors still presented on average audience *1.4* times smaller than male professors.
```{r, echo=F}
my3 <- ggpredict(m3, terms=c("pc1","gender", "affirm_action[before]")) %>% as.data.frame()
ggplot(my3, aes(x=x, y=predicted, col=group)) +
geom_ribbon(aes(ymin=conf.low,ymax=conf.high, fill=group), alpha=0.3,
colour = NA) +
geom_line(size=0.5)+
scale_color_manual(name="Gender",values = c("#6D57CF","#FCA532"))+
scale_fill_manual(name="Gender",values = c("#6D57CF","#FCA532"))+
theme_cowplot() + ggtitle("") +
ylab("Audience (N)") + xlab("Productivity index (PC1 axis)")+
geom_point(data=dp, aes(x=pc1, y=audience_n, col=gender), alpha=0.6)
```
```{r}
my3 <- ggpredict(m3, terms=c("gender"))
plot(my3)
```
```{r}
my4 <- ggpredict(m4, terms=c("pc1","gender")) %>% as.data.frame()
ggplot(my4, aes(x=x, y=predicted, col=group)) +
geom_ribbon(aes(ymin=conf.low,ymax=conf.high, fill=group), alpha=0.3,
colour = NA) +
geom_line()+
scale_color_manual(name="Gender",values = c("#6D57CF","#FCA532"))+
scale_fill_manual(name="Gender",values = c("#6D57CF","#FCA532"))+
theme_cowplot() + ggtitle("") +
ylab("Audience (N)") + xlab("Productivity index (PC1 axis)")+
geom_point(data=dp, aes(x=pc1, y=audience_n, col=gender), alpha=0.6)
#ggsave("figures/audience_professor.jpeg", width=9, height = 6)
```
# Figure 3 audience
```{r,echo=F, fig.height=9, fig.width=9}
prs <- as.data.frame(myg11) %>% rename(affirm_action = facet,
position_cat=x)
f1 <- ggplot(data, aes(x=position_cat, y=audience_n)) +
geom_point(aes(col=gender), position = position_dodge(0.6), alpha=0.3,
size=3,show.legend = F) +
facet_grid(~affirm_action, labeller =
as_labeller(c(before = "Before Affirmative action",
after = "After Affirmative action"))) +
scale_color_manual(values = c("#6D57CF","#FCA532")) +
#scale_x_discrete(labels = c("Before", "After"))+
#scale_y_log10()+
scale_fill_manual(name="Gender", values = c("#6D57CF","#FCA532")) +
geom_pointrange(data=prs, aes(x=position_cat, y=predicted,fill=group,
ymax=conf.high, ymin=conf.low), alpha=1,
position=position_dodge(0.6), size=1.2, shape=21, col="black") +
xlab("Academic level") + ylab("Audience (N)") + labs(tag="a)")
my3 <- ggpredict(m3, terms=c("pc1","gender"))
my3 <- as.data.frame(my3)
f2 <- ggplot(my3, aes(x=x, y=predicted, col=group)) +
geom_ribbon(aes(ymin=conf.low,ymax=conf.high, fill=group), alpha=0.3,
colour = NA) +
geom_line(size=0.9)+
scale_color_manual(name="Gender",values = c("#6D57CF","#FCA532"))+
scale_fill_manual(name="Gender",values = c("#6D57CF","#FCA532"))+
theme_cowplot() + ggtitle("") +
ylab("Audience (N)") + xlab("Productivity index (PC1 axis)")+
geom_point(data=dp, aes(x=pc1, y=audience_n, col=gender), alpha=0.6,
size=2)+
theme(legend.position="none",
plot.title = element_text(size=12, vjust=2, hjust=0.5)) +
labs(tag="c)", title="Professors' audience")
p1<- fviz_pca_biplot(pca1, col.ind = dp$gender, addEllipses=TRUE,
col.ind.sub="none", geom="point",
repel = TRUE) +
facet_grid(.~.)+
geom_vline(xintercept = 0, linetype="dashed") +
geom_hline(yintercept = 0, linetype="dashed")+
scale_color_manual(name="gender",values = c("#6D57CF","#FCA532"))+
scale_shape(name="gender")+
scale_fill_manual(name="gender",values = c("#6D57CF","#FCA532"))+
labs(title="Professors' productivity", tag="b)") +
xlab("PC1 (52%)") + ylab("PC2 (21%)") +
theme_cowplot() +
theme(legend.position="none",
plot.title = element_text(size=12, vjust=2, hjust=0.5))
f1/(p1+f2) +plot_layout(guides="collect", heights = c(0.9,1))
ggsave("figures/FIG_3_audience.jpeg", width=10, height = 9)
```
<!--T
```{r, echo=F, eval=F}
TEST
p1alt <- fviz_pca_biplot(pca1, col.ind = dp$gender, addEllipses=TRUE,
col.ind.sub="none", geom="point",labelsize =3,
col.var = "#3B3B3B",
repel = TRUE) +
facet_grid(.~.)+
xlim(-5.8,7.5)+
geom_vline(xintercept = 0, linetype="dashed", col="azure4") +
geom_hline(yintercept = 0, linetype="dashed", col="azure4")+
scale_color_manual(name="gender",values = c("#6D57CF","#FCA532"))+
scale_shape(name="gender")+
scale_fill_manual(name="gender",values = c("#6D57CF","#FCA532"))+
ggtitle("")+
#labs(title="Professors' productivity") +
xlab("PC1 (52%)") + ylab("PC2 (21%)") +
theme_cowplot() +
theme(legend.position="none",
panel.background = element_rect(fill="white"),
text = element_text(size=9),
axis.text = element_text(size=9),
plot.title = element_text(size=12, vjust=2, hjust=0.5))
f2 + ggtitle("") + labs(tag="")+
theme(legend.position="right",
plot.title = element_text(size=12, vjust=2, hjust=0.5)) +
inset_element(p1alt,
0.49, 0.5, 1.03, 1.14)
ggsave("figures/FIG_3_bc_alternative.jpeg", width=8, height=6)
```