forked from medema-group/BiG-SCAPE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathArrowerSVG.py
619 lines (503 loc) · 28 KB
/
ArrowerSVG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
#! /usr/bin/python
######################################################################
# #
# PLOT ARROWS FOR GENE CLUSTER GIVEN A GenBank FILE #
# Peter Cimermancic #
# April 2010 #
# heavily modified by Jorge Navarro 2016 #
######################################################################
import os
from pathlib import Path
import sys
from Bio import SeqIO
from random import uniform
from colorsys import hsv_to_rgb
from colorsys import rgb_to_hsv
from math import sin, atan2, pi
from collections import defaultdict
global internal_domain_margin
global gene_contour_thickness
global stripe_thickness
global gene_categories_color
internal_domain_margin = 3
domain_contour_thickness = 1
gene_contour_thickness = 2 # thickness grows outwards
stripe_thickness = 3
def read_color_domains_file(output_folder):
# Try to read colors for domains
color_domains = {}
if os.path.isfile(output_folder / Path("domains_color_file.tsv")):
print(" Found file with domains colors")
with open(output_folder / Path("domains_color_file.tsv"), "r") as color_domains_handle:
for line in color_domains_handle:
# handle comments and empty lines
if line[0] != "#" and line.strip():
row = line.strip().split("\t")
name = row[0]
rgb = row[1].split(",")
color_domains[name] = [int(rgb[x]) for x in range(3)]
else:
print(" Domains colors file was not found. An empty file will be created")
color_domains_handle = open(output_folder / Path("domains_color_file.tsv"), "a+")
return color_domains
# --- Draw arrow for gene
def draw_arrow(additional_tabs, X, Y, L, l, H, h, strand, color, color_contour, category, gid, domain_list):
"""
SVG code for arrow:
- (X,Y) ... upper left (+) or right (-) corner of the arrow
- L ... arrow length
- H ... arrow height
- strand
- h ... arrow head edge width
- l ... arrow head length
- color
- strand
the edges are ABCDEFG starting from (X,Y)
"""
if strand == '+':
head_end = L
if L < l:
# squeeze arrow if length shorter than head length
A = [X,Y-h]
B = [X+L,Y+H/2]
C = [X,Y+H+h]
head_start = 0
points = [A, B, C]
else:
A = [X,Y]
B = [X+L-l,Y]
C = [X+L-l,Y-h]
D = [X+L,Y+H/2]
E = [X+L-l,Y+H+h]
F = [X+L-l,Y+H]
G = [X,Y+H]
head_start = L - l # relative to the start of the gene, not absolute coords.
points = [A, B, C, D, E, F, G]
elif strand == '-':
head_start = 0
if L < l:
# squeeze arrow if length shorter than head length
A = [X,Y+H/2]
B = [X+L,Y-h]
C = [X+L,Y+H+h]
head_end = L
points = [A, B, C]
else:
A = [X+L,Y]
B = [X+l,Y]
C = [X+l,Y-h]
D = [X,Y+H/2]
E = [X+l,Y+H+h]
F = [X+l,Y+H]
G = [X+L,Y+H]
head_end = l
points = [A, B, C, D, E, F, G]
else:
return ""
head_length = head_end - head_start
if head_length == 0:
return ""
points_coords = []
for point in points:
points_coords.append(str(int(point[0])) + "," + str(int(point[1])))
arrow = additional_tabs + "\t<g>\n"
# unidentified genes don't have a title and have a darker contour
if gid != "NoName":
arrow += additional_tabs + "\t\t<title>" + gid + "</title>\n"
else:
color_contour = [50, 50, 50]
arrow += "{}\t\t<polygon class=\"{}\" ".format(additional_tabs, gid)
arrow += "points=\"{}\" fill=\"rgb({})\" ".format(" ".join(points_coords), ",".join([str(val) for val in color]))
arrow += "fill-opacity=\"1.0\" stroke=\"rgb({})\" ".format(",".join([str(val) for val in color_contour]))
arrow += "stroke-width=\"{}\" {} />\n".format(str(gene_contour_thickness), category)
# paint domains. Domains on the tip of the arrow should not have corners sticking
# out of them
for domain in domain_list:
#[X, L, H, domain_accession, (domain_name, domain_description), color, color_contour]
dX = domain[0]
dL = domain[1]
dH = domain[2]
dacc = domain[3]
dname = domain[4][0]
ddesc = domain[4][1]
dcolor = domain[5]
dccolour = domain[6]
arrow += additional_tabs + "\t\t<g>\n"
arrow += "{}\t\t\t<title>{} ({})\n\"{}\"</title>\n".format(additional_tabs, dname, dacc, ddesc)
if strand == "+":
# calculate how far from head_start we (the horizontal guide at y=Y+internal_domain_margin)
# would crash with the slope
# Using similar triangles:
collision_x = head_length * (h + internal_domain_margin)
collision_x /= (h + H/2.0)
collision_x = round(collision_x)
# either option for x_margin_offset work
#m = -float(h + H/2)/(head_length) #slope of right line
#x_margin_offset = (internal_domain_margin*sqrt(1+m*m))/m
#x_margin_offset = -(x_margin_offset)
x_margin_offset = internal_domain_margin/sin(pi - atan2(h+H/2.0,-head_length))
if (dX + dL) < head_start + collision_x - x_margin_offset:
arrow += "{}\t\t\t<rect class=\"{}\" x=\"{}\" ".format(additional_tabs, dacc, str(X+dX))
arrow += "y=\"{}\" stroke-linejoin=\"round\" ".format(str(Y + internal_domain_margin))
arrow += "width=\"{}\" height=\"{}\" ".format(str(dL), str(dH))
arrow += "fill=\"rgb({})\" stroke=\"rgb({})\" ".format(",".join([str(val) for val in dcolor]), ",".join([str(val) for val in dccolour]))
arrow += "stroke-width=\"{}\" opacity=\"0.75\" />\n".format(str(domain_contour_thickness))
else:
del points[:]
if dX < head_start + collision_x - x_margin_offset:
# add points A and B
points.append([X + dX, Y + internal_domain_margin])
points.append([X + head_start + collision_x - x_margin_offset, Y + internal_domain_margin])
else:
# add point A'
start_y_offset = (h + H/2)*(L - x_margin_offset - dX)
start_y_offset /= head_length
start_y_offset = int(start_y_offset)
points.append([X + dX, int(Y + H/2 - start_y_offset)])
# handle the rightmost part of the domain
if dX + dL >= head_end - x_margin_offset: # could happen more easily with the scaling
points.append([X + head_end - x_margin_offset, int(Y + H/2)]) # right part is a triangle
else:
# add points C and D
end_y_offset = (2*h + H)*(L - x_margin_offset - dX - dL)
end_y_offset /= 2*head_length
end_y_offset = int(end_y_offset)
points.append([X + dX + dL, int(Y + H/2 - end_y_offset)])
points.append([X + dX + dL, int(Y + H/2 + end_y_offset)])
# handle lower part
if dX < head_start + collision_x - x_margin_offset:
# add points E and F
points.append([X + head_start + collision_x - x_margin_offset, Y + H - internal_domain_margin])
points.append([X + dX, Y + H - internal_domain_margin])
else:
# add point F'
points.append([X + dX, int(Y + H/2 + start_y_offset)])
del points_coords[:]
for point in points:
points_coords.append(str(int(point[0])) + "," + str(int(point[1])))
arrow += "{}\t\t\t<polygon class=\"{}\" ".format(additional_tabs, dacc)
arrow += "points=\"{}\" stroke-linejoin=\"round\" ".format(" ".join(points_coords))
arrow += "width=\"{}\" height=\"{}\" ".format(str(dL), str(dH))
arrow += "fill=\"rgb({})\" ".format(",".join([str(val) for val in dcolor]))
arrow += "stroke=\"rgb({})\" ".format(",".join([str(val) for val in dccolour]))
arrow += "stroke-width=\"{}\" opacity=\"0.75\" />\n".format(str(domain_contour_thickness))
# now check other direction
else:
# calculate how far from head_start we (the horizontal guide at y=Y+internal_domain_margin)
# would crash with the slope
# Using similar triangles:
collision_x = head_length * ((H/2) - internal_domain_margin)
collision_x /= (h + H/2.0)
collision_x = round(collision_x)
x_margin_offset = round(internal_domain_margin/sin(atan2(h+H/2.0,head_length)))
# nice, blocky domains
if dX > collision_x + x_margin_offset:
arrow += "{}\t\t\t<rect class=\"{}\" ".format(additional_tabs, dacc)
arrow += "x=\"{}\" y=\"{}\" ".format(str(X+dX), str(Y + internal_domain_margin))
arrow += "stroke-linejoin=\"round\" width=\"{}\" height=\"{}\" ".format(str(dL), str(dH))
arrow += "fill=\"rgb({})\" ".format(",".join([str(val) for val in dcolor]))
arrow += "stroke=\"rgb({})\" ".format(",".join([str(val) for val in dccolour]))
arrow += "stroke-width=\"{}\" opacity=\"0.75\" />\n".format(str(domain_contour_thickness))
else:
del points[:]
# handle lefthand side. Regular point or pointy start?
if dX >= x_margin_offset:
start_y_offset = round((h + H/2)*(dX - x_margin_offset)/head_length)
points.append([X + dX, Y + H/2 - start_y_offset])
else:
points.append([X + x_margin_offset, Y + H/2])
# handle middle/end
if dX + dL < collision_x + x_margin_offset:
if head_length != 0:
end_y_offset = round((h + H/2)*(dX + dL - x_margin_offset)/head_length)
else:
end_y_offset = 0
points.append([X + dX + dL, Y + H/2 - end_y_offset])
points.append([X + dX + dL, Y + H/2 + end_y_offset])
else:
points.append([X + collision_x + x_margin_offset, Y + internal_domain_margin])
points.append([X + dX + dL, Y + internal_domain_margin])
points.append([X + dX + dL, Y + internal_domain_margin + dH])
points.append([X + collision_x + x_margin_offset, Y + internal_domain_margin + dH])
# last point, if it's not a pointy domain
if dX >= x_margin_offset:
points.append([X + dX, Y + H/2 + start_y_offset])
del points_coords[:]
for point in points:
points_coords.append(str(int(point[0])) + "," + str(int(point[1])))
arrow += "{}\t\t\t<polygon class=\"{}\" ".format(additional_tabs, dacc)
arrow += "points=\"{}\" stroke-linejoin=\"round\" ".format(" ".join(points_coords))
arrow += "width=\"{}\" height=\"{}\" ".format(str(dL), str(dH))
arrow += "fill=\"rgb({})\" ".format(",".join([str(val) for val in dcolor]))
arrow += "stroke=\"rgb({})\" ".format(",".join([str(val) for val in dccolour]))
arrow += "stroke-width=\"{}\" opacity=\"0.75\" />\n".format(str(domain_contour_thickness))
arrow += additional_tabs + "\t\t</g>\n"
arrow += additional_tabs + "\t</g>\n"
return arrow
def draw_line(X,Y,L):
"""
Draw a line below genes
"""
line = "<line x1=\"{}\" y1=\"{}\" x2=\"{}\" y2=\"{}\" style=\"stroke:rgb(70,70,70); stroke-width:{} \"/>\n".format(str(X), str(Y), str(X+L), str(Y), str(stripe_thickness))
return line
def new_color(gene_or_domain):
# see https://en.wikipedia.org/wiki/HSL_and_HSV
# and http://stackoverflow.com/a/1586291
h = uniform(0, 1) # all possible colors
if gene_or_domain == "gene":
s = uniform(0.15, 0.3)
v = uniform(0.98, 1.0)
elif gene_or_domain == "domain":
s = uniform(0.5, 0.75) # lower: less saturated
v = uniform(0.7, 0.9) # lower = darker
else:
sys.exit("unknown kind of color. Should be 'gene' or 'domain'")
r, g, b = tuple(int(c * 255) for c in hsv_to_rgb(h, s, v))
return [r, g, b]
def SVG(output_folder, write_html, outputfile, GenBankFile, BGCname, pfdFile, use_pfd, color_genes, color_domains, pfam_domain_categories, pfam_info, loci, max_width, H=30, h=15, l=30, mX=10, mY=10, scaling=30, absolute_start=0, absolute_end=-1):
'''
Create the main SVG document:
- read pfd file with domain information (pfdFile contains complete path)
- read GenBank document (GenBankFile contains handle of opened file)
- record genes, start and stop positions, and strands, and associate domains
- write the SVG files
'''
# for colors not found in colors_genes and color_domains, we need to generate them from scratch
new_color_genes = {}
new_color_domains = {}
SVG_TEXT = "" # here we keep all the text that will be written down as a file
# check whether we have a corresponding pfd file wih domain annotations
if use_pfd:
if not os.path.isfile(pfdFile):
sys.exit("Error (Arrower): " + pfdFile + " not found")
# --- create SVG header. We have to get max_width first
# This means that we have to read the gbk file once to know num loci, max_width
if loci == -1:
try:
records = list(SeqIO.parse(GenBankFile), "genbank")
except:
sys.exit(" Arrower: error while opening GenBank")
else:
loci = len(records)
max_width = 0
for record in records:
if len(record) > max_width:
max_width = len(record)
if absolute_end < 0: # absolute_end == -1 means "the whole region"
absolute_end = max_width
else:
if (absolute_end - absolute_start) < max_width: # user specified something shorter than full region
max_width = float(absolute_end - absolute_start)
else: # user specified something bigger than full region. Cropping to max_width
absolute_end = max_width
max_width /= scaling
if write_html:
header = "\t\t<div title=\"" + BGCname + "\">\n"
additional_tabs = "\t\t\t"
header += "{}<svg width=\"{}\" height=\"{}\">\n".format(additional_tabs, str(max_width + 2*(mX)), str(loci*(2*h + H + 2*mY)))
addY = loci*(2*h + H + 2*mY)
else:
header = "<svg version=\"1.1\" baseProfile=\"full\" xmlns=\"http://www.w3.org/2000/svg\" width=\"" + str(max_width + 2*(mX)) + "\" height=\"" + str(loci*(2*h + H + 2*mY)) + "\">\n"
addY = 0
additional_tabs = "\t"
SVG_TEXT = header
# For info on the color matrix definition:
# https://www.w3.org/TR/SVG11/filters.html#feColorMatrixElement
# Core Bio: "#DC143C", (220, 20, 60) Dark red
# Other Bio:
# original: "#DF809D", (223, 128, 157) Pink .87, 0.5, 0.61
# alternative: #f4a236, (244,162,54) 0.95, 0.63, 0.21
# Transporter: "#3F9FBA" (63, 159, 186) Blue
# 32839a, (50, 131, 154), 0.19, 0.51, 0.6
# Regulator: "#63BB6D" (99, 187, 109) Green
# #127E1B, (18,126,27) 0.07, 0.49, 0.1
if len(pfam_domain_categories) > 0:
filters = additional_tabs + "<filter id=\"shadow_CoreBio\" color-interpolation-filters=\"sRGB\" x=\"-65%\" y=\"-25%\" width=\"230%\" height=\"150%\">\n"
filters += additional_tabs + "\t<feColorMatrix in=\"SourceGraphic\" result=\"matrixOut\" type=\"matrix\" values=\"0 0 0 0 0.85 0 0 0 0 0.08 0 0 0 0 0.23 0 0 0 1 0\" />\n"
filters += additional_tabs + "\t<feGaussianBlur in=\"matrixOut\" result=\"blurOut\" stdDeviation=\"7\" />\n"
filters += additional_tabs + "\t<feBlend in=\"SourceGraphic\" in2=\"blurOut\" mode=\"normal\" />\n"
filters += additional_tabs + "</filter>\n"
filters += additional_tabs + "<filter id=\"shadow_OtherBio\" color-interpolation-filters=\"sRGB\" x=\"-65%\" y=\"-25%\" width=\"230%\" height=\"150%\">\n"
filters += additional_tabs + "\t<feColorMatrix in=\"SourceGraphic\" result=\"matrixOut\" type=\"matrix\" values=\"0 0 0 0 0.95 0 0 0 0 0.63 0 0 0 0 0.21 0 0 0 1 0\" />\n"
filters += additional_tabs + "\t<feGaussianBlur in=\"matrixOut\" result=\"blurOut\" stdDeviation=\"7\" />\n"
filters += additional_tabs + "\t<feBlend in=\"SourceGraphic\" in2=\"blurOut\" mode=\"normal\" />\n"
filters += additional_tabs + "</filter>\n"
filters += additional_tabs + "<filter id=\"shadow_Transporter\" color-interpolation-filters=\"sRGB\" x=\"-65%\" y=\"-25%\" width=\"230%\" height=\"150%\">\n"
filters += additional_tabs + "\t<feColorMatrix in=\"SourceGraphic\" result=\"matrixOut\" type=\"matrix\" values=\"0 0 0 0 0.19 0 0 0 0 0.51 0 0 0 0 0.6 0 0 0 1 0\" />\n"
filters += additional_tabs + "\t<feGaussianBlur in=\"matrixOut\" result=\"blurOut\" stdDeviation=\"7\" />\n"
filters += additional_tabs + "\t<feBlend in=\"SourceGraphic\" in2=\"blurOut\" mode=\"normal\" />\n"
filters += additional_tabs + "</filter>\n"
filters += additional_tabs + "<filter id=\"shadow_Regulator\" color-interpolation-filters=\"sRGB\" x=\"-65%\" y=\"-25%\" width=\"230%\" height=\"150%\">\n"
filters += additional_tabs + "\t<feColorMatrix in=\"SourceGraphic\" result=\"matrixOut\" type=\"matrix\" values=\"0 0 0 0 0.07 0 0 0 0 0.49 0 0 0 0 0.1 0 0 0 1 0\" />\n"
filters += additional_tabs + "\t<feGaussianBlur in=\"matrixOut\" result=\"blurOut\" stdDeviation=\"7\" />\n"
filters += additional_tabs + "\t<feBlend in=\"SourceGraphic\" in2=\"blurOut\" mode=\"normal\" />\n"
filters += additional_tabs + "</filter>\n"
SVG_TEXT += filters
# --- read in GenBank file
# handle domains
if use_pfd:
identifiers = defaultdict(list)
with open(pfdFile, "r") as pfd_handle:
for line in pfd_handle:
row = line.strip().split("\t")
# use to access to parent's properties
identifier = row[9].replace("<","").replace(">","")
# if it's the new version of pfd file, we can take the last part
# to make it equal to the identifiers used in gene_list. Strand
# is recorded in parent gene anyway
if ":strand:+" in identifier:
identifier = identifier.replace(":strand:+", "")
strand = "+"
if ":strand:-" in identifier:
identifier = identifier.replace(":strand:-", "")
strand = "-"
width = 3*(int(row[4]) - int(row[3]))
if strand == "+":
# multiply by 3 because the env. coordinate is in aminoacids, not in bp
# This start is relative to the start of the gene
start = 3*int(row[3])
else:
loci_start = int(row[7].replace("<","").replace(">",""))
loci_end = int(row[8].replace("<","").replace(">",""))
start = loci_end - loci_start - 3*int(row[3]) - width
# geometry
start = int(start/scaling)
width = int(width/scaling)
# accession
domain_acc = row[5].split(".")[0]
# colors
try:
color = color_domains[domain_acc]
except KeyError:
color = new_color("domain")
new_color_domains[domain_acc] = color
color_domains[domain_acc] = color
pass
# contour color is a bit darker. We go to h,s,v space for that
h_, s, v = rgb_to_hsv(float(color[0])/255.0, float(color[1])/255.0, float(color[2])/255.0)
color_contour = tuple(int(c * 255) for c in hsv_to_rgb(h_, s, 0.8*v))
# [X, L, H, domain_acc, color, color_contour]
identifiers[identifier].append([start, width, int(H - 2*internal_domain_margin), domain_acc, pfam_info[domain_acc], color, color_contour])
loci = 0
feature_counter = 1
records = list(SeqIO.parse(GenBankFile, "genbank"))
for seq_record in records:
add_origin_Y = loci * (2*(h+mY) + H)
# draw a line that coresponds to cluster size
ClusterSize = len(seq_record.seq)
if (absolute_end - absolute_start) < ClusterSize:
ClusterSize = (absolute_end - absolute_start)
line = draw_line(mX, add_origin_Y + mY + h + H/2, ClusterSize/scaling)
SVG_TEXT += additional_tabs + "<g>\n"
SVG_TEXT += additional_tabs + "\t" + line
# Calculate features for all arrows
for feature in [feature for feature in seq_record.features if feature.location.start >= absolute_start and feature.location.end <= absolute_end]:
if feature.type == 'CDS':
# Get name
try:
GeneName = feature.qualifiers['gene'][0]
cds_tag = GeneName
except KeyError:
GeneName = 'NoName'
cds_tag = ""
if "locus_tag" in feature.qualifiers:
cds_tag += " (" + feature.qualifiers["locus_tag"][0] + ")"
if "product" in feature.qualifiers:
cds_tag += "\n" + feature.qualifiers["product"][0]
# Get color
color = (255,255,255)
#try:
#color = color_genes[GeneName]
#except KeyError:
#color = new_color("gene")
#new_color_genes[GeneName] = color
#color_genes[GeneName] = color
#pass
color_contour = (0,0,0)
# change to hsv color palette to lower shade for contour color
#h_, s, v = rgb_to_hsv(float(color[0])/255.0, float(color[1])/255.0, float(color[2])/255.0)
#color_contour = tuple(int(c * 255) for c in hsv_to_rgb(h_, s, 0.4*v))
# Get strand
strand = feature.strand
if strand == -1:
strand = '-'
elif strand == 1:
strand = '+'
else:
sys.exit("Weird strand value: " + strand)
# define arrow's start and end
# http://biopython.org/DIST/docs/api/Bio.SeqFeature.FeatureLocation-class.html#start
start = feature.location.start - absolute_start
start = int(start/scaling)
stop = feature.location.end - absolute_start
stop = int(stop/scaling)
# assemble identifier to match domains with this feature
try:
protein_id = feature.qualifiers['protein_id'][0]
except KeyError:
protein_id = ""
pass
identifier = BGCname + "_ORF" + str(feature_counter)
identifier += ":gid::" if GeneName == "NoName" else ":gid:" + str(GeneName) + ":"
identifier += "pid:" + str(protein_id) + ":loc:" + str(feature.location.start) + ":" + str(feature.location.end)
identifier = identifier.replace("<","").replace(">","")
# gene category according to domain content
#has_core = False
#has_otherbio = False
#has_transporter = False
#has_regulator = False
#for row in identifiers[identifier]:
#dom_acc = row[3]
#cat = ""
#try:
#cat = pfam_domain_categories[dom_acc]
#except KeyError:
#pass
#if cat == "Core Biosynthetic":
#has_core = True
#if cat == "Other Biosynthetic":
#has_otherbio = True
#if cat == "Transporter":
#has_transporter = True
#if cat == "Regulator":
#has_regulator = True
gene_category = ""
#if has_core:
#gene_category = "filter=\"url(#shadow_CoreBio)\""
#if has_otherbio and not (has_core or has_transporter or has_regulator):
#gene_category = "filter=\"url(#shadow_OtherBio)\""
#if has_transporter and not (has_core or has_otherbio or has_regulator):
#gene_category = "filter=\"url(#shadow_Transporter)\""
#if has_regulator and not (has_core or has_otherbio or has_transporter):
#gene_category = "filter=\"url(#shadow_Regulator)\""
#X, Y, L, l, H, h, strand, color, color_contour, category, gid, domain_list
arrow = draw_arrow(additional_tabs, start+mX, add_origin_Y+mY+h, int(feature.location.end-feature.location.start)/scaling, l, H, h, strand, color, color_contour, gene_category, cds_tag, identifiers[identifier])
if arrow == "":
print(" (ArrowerSVG) Warning: something went wrong with {}".format(BGCname))
SVG_TEXT += arrow
feature_counter += 1
loci += 1
SVG_TEXT += additional_tabs + "</g>\n"
SVG_TEXT += additional_tabs[:-2] + "</svg>\n"
if write_html:
SVG_TEXT += "\t\t</div>\n"
# finally append new colors to file:
#if len(new_color_genes) > 0:
#if len(new_color_genes) < 10:
#print(" Saving new color names for genes " + ", ".join(new_color_genes.keys()))
#else:
#print(" Saving new color names for 10+ genes...")
#with open(gene_color_file, "a") as color_genes_handle:
#for new_names in new_color_genes:
#color_genes_handle.write(new_names + "\t" + ",".join([str(ncg) for ncg in new_color_genes[new_names]]) + "\n")
if len(new_color_domains) > 0:
#if len(new_color_domains) < 10:
#print(" Saving new color names for domains " + ", ".join(new_color_domains.keys()))
#else:
#print(" Saving new color names for 10+ domains")
with open(output_folder / Path("domains_color_file.tsv"), "a") as color_domains_handle:
for new_names in new_color_domains:
color_domains_handle.write(new_names + "\t" + ",".join([str(ncdom) for ncdom in new_color_domains[new_names]]) + "\n")
mode = "a" if write_html == True else "w"
with open(outputfile, mode) as handle:
handle.write(SVG_TEXT)