This repository has been archived by the owner on Jun 13, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathoptimistic_exploration.py
87 lines (61 loc) · 2.16 KB
/
optimistic_exploration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import utils.pytorch_util as ptu
from trainer.policies import TanhNormal
import math
import numpy as np
def get_optimistic_exploration_action(ob_np, policy=None, qfs=None, hyper_params=None):
assert ob_np.ndim == 1
beta_UB = hyper_params['beta_UB']
delta = hyper_params['delta']
ob = ptu.from_numpy(ob_np)
# Ensure that ob is not batched
assert len(list(ob.shape)) == 1
_, pre_tanh_mu_T, _, _, std, _ = policy(ob)
# Ensure that pretanh_mu_T is not batched
assert len(list(pre_tanh_mu_T.shape)) == 1, pre_tanh_mu_T
assert len(list(std.shape)) == 1
pre_tanh_mu_T.requires_grad_()
tanh_mu_T = torch.tanh(pre_tanh_mu_T)
# Get the upper bound of the Q estimate
args = list(torch.unsqueeze(i, dim=0) for i in (ob, tanh_mu_T))
Q1 = qfs[0](*args)
Q2 = qfs[1](*args)
mu_Q = (Q1 + Q2) / 2.0
sigma_Q = torch.abs(Q1 - Q2) / 2.0
Q_UB = mu_Q + beta_UB * sigma_Q
# Obtain the gradient of Q_UB wrt to a
# with a evaluated at mu_t
grad = torch.autograd.grad(Q_UB, pre_tanh_mu_T)
grad = grad[0]
assert grad is not None
assert pre_tanh_mu_T.shape == grad.shape
# Obtain Sigma_T (the covariance of the normal distribution)
Sigma_T = torch.pow(std, 2)
# The dividor is (g^T Sigma g) ** 0.5
# Sigma is diagonal, so this works out to be
# ( sum_{i=1}^k (g^(i))^2 (sigma^(i))^2 ) ** 0.5
denom = torch.sqrt(
torch.sum(
torch.mul(torch.pow(grad, 2), Sigma_T)
)
) + 10e-6
# Obtain the change in mu
mu_C = math.sqrt(2.0 * delta) * torch.mul(Sigma_T, grad) / denom
assert mu_C.shape == pre_tanh_mu_T.shape
mu_E = pre_tanh_mu_T + mu_C
# Construct the tanh normal distribution and sample the exploratory action from it
assert mu_E.shape == std.shape
dist = TanhNormal(mu_E, std)
ac = dist.sample()
ac_np = ptu.get_numpy(ac)
# mu_T_np = ptu.get_numpy(pre_tanh_mu_T)
# mu_C_np = ptu.get_numpy(mu_C)
# mu_E_np = ptu.get_numpy(mu_E)
# dict(
# mu_T=mu_T_np,
# mu_C=mu_C_np,
# mu_E=mu_E_np
# )
# Return an empty dict, and do not log
# stats for now
return ac_np, {}