-
Notifications
You must be signed in to change notification settings - Fork 264
/
Copy pathcreate_padded_dataset.py
218 lines (162 loc) · 7.14 KB
/
create_padded_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""
Copyright (C) 2023 Microsoft Corporation
Script to create a version of the dataset with a specified amount of padding around the table.
Does not add padding to the image, only crops the image to have the specified amount of padding
around the table.
Assumes the data is in PASCAL VOC data format and the folder structure is:
[data_directory]/
- images/
- train/
- test/
- val/
"""
import argparse
import os
from xml.dom import minidom
import xml.etree.ElementTree as ET
import json
from PIL import Image
from fitz import Rect
def read_pascal_voc(xml_filepath):
tree = ET.parse(xml_filepath)
root = tree.getroot()
bboxes = []
labels = []
filename = root.find('filename').text
size = root.find('size')
source = root.find('source')
database = source.find('database').text
width = size.find('width').text
height = size.find('height').text
for object_ in root.iter('object'):
filename = root.find('filename').text
ymin, xmin, ymax, xmax = None, None, None, None
label = object_.find("name").text
for box in object_.findall("bndbox"):
ymin = float(box.find("ymin").text)
xmin = float(box.find("xmin").text)
ymax = float(box.find("ymax").text)
xmax = float(box.find("xmax").text)
bbox = [xmin, ymin, xmax, ymax] # PASCAL VOC
bboxes.append(bbox)
labels.append(label)
return bboxes, labels, filename, width, height, database
def create_pascal_voc_page_element(image_filename, output_image_width, output_image_height, database):
# Create XML of tables on PDF page in PASCAL VOC format
annotation = ET.Element("annotation")
folder = ET.SubElement(annotation, "folder").text = ""
filename = ET.SubElement(annotation, "filename").text = image_filename
path = ET.SubElement(annotation, "path").text = image_filename
source = ET.SubElement(annotation, "source")
database = ET.SubElement(source, "database").text = database
size = ET.SubElement(annotation, "size")
width = ET.SubElement(size, "width").text = str(output_image_width)
height = ET.SubElement(size, "height").text = str(output_image_height)
depth = ET.SubElement(size, "depth").text = "3"
segmented = ET.SubElement(annotation, "segmented").text = "0"
return annotation
def create_pascal_voc_object_element(class_label, bbox):
object_ = ET.Element("object")
name = ET.SubElement(object_, "name").text = class_label
pose = ET.SubElement(object_, "pose").text = "Frontal"
truncated = ET.SubElement(object_, "truncated").text = "0"
difficult = ET.SubElement(object_, "difficult").text = "0"
occluded = ET.SubElement(object_, "occluded").text = "0"
bndbox = ET.SubElement(object_, "bndbox")
ET.SubElement(bndbox, "xmin").text = str(bbox[0])
ET.SubElement(bndbox, "ymin").text = str(bbox[1])
ET.SubElement(bndbox, "xmax").text = str(bbox[2])
ET.SubElement(bndbox, "ymax").text = str(bbox[3])
return object_
def save_xml_pascal_voc(page_annotation, filepath):
xmlstr = minidom.parseString(ET.tostring(page_annotation)).toprettyxml(indent=" ")
with open(filepath, "w") as f:
f.write(xmlstr)
def iob(bbox1, bbox2):
"""
Compute the intersection area over box area, for bbox1.
"""
intersection = Rect(bbox1).intersect(bbox2)
return intersection.get_area() / Rect(bbox1).get_area()
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--pascal_data_dir',
help="Root directory for source data to process")
parser.add_argument('--words_data_dir',
help="Root directory for source data to process")
parser.add_argument('--split', default='',
help="Split to process")
parser.add_argument('--table_padding', type=int, default=2)
return parser.parse_args()
def main():
args = get_args()
data_directory = args.pascal_data_dir
if data_directory.endswith(os.sep):
data_directory = data_directory[:-1]
words_directory = args.words_data_dir
if words_directory.endswith(os.sep):
words_directory = words_directory[:-1]
split = args.split
padding = args.table_padding
data_output_directory = data_directory + "_PADDING_" + str(padding)
words_output_directory = words_directory + "_PADDING_" + str(padding)
if not os.path.exists(data_output_directory):
os.makedirs(data_output_directory)
if not os.path.exists(words_output_directory):
os.makedirs(words_output_directory)
source_subdir = os.path.join(data_directory, split)
dest_subdir = os.path.join(data_output_directory, split)
source_image_directory = os.path.join(data_directory, "images")
dest_image_directory = os.path.join(data_output_directory, "images")
if not os.path.exists(dest_subdir):
os.makedirs(dest_subdir)
if not os.path.exists(dest_image_directory):
os.makedirs(dest_image_directory)
files = os.listdir(source_subdir)
for file in files:
filepath = os.path.join(source_subdir, file)
words_filepath = os.path.join(words_directory, file.replace('.xml', '_words.json'))
bboxes, labels, filename, width, height, database = read_pascal_voc(filepath)
tables = [idx for idx, label in enumerate(labels) if label == 'table']
image_filepath = os.path.join(source_image_directory, filename)
img = Image.open(image_filepath)
if not len(tables) == 1:
print('Problem')
table_bbox = bboxes[tables[0]]
crop_bbox = [round(elem) for elem in table_bbox]
crop_bbox[0] -= padding
crop_bbox[1] -= padding
crop_bbox[2] += padding
crop_bbox[3] += padding
img = img.crop(crop_bbox)
annotation = create_pascal_voc_page_element(filename, img.width, img.height, database)
for label, bbox in zip(labels, bboxes):
bbox = [bbox[0]-crop_bbox[0],
bbox[1]-crop_bbox[1],
bbox[2]-crop_bbox[0],
bbox[3]-crop_bbox[1]]
# Add to PASCAl VOC
element = create_pascal_voc_object_element(label, bbox)
annotation.append(element)
dest_img_path = os.path.join(dest_image_directory, filename)
img.save(dest_img_path)
dest_annot_path = os.path.join(dest_subdir, file)
save_xml_pascal_voc(annotation, dest_annot_path)
with open(words_filepath, 'r') as jf:
data = json.load(jf)
padded_words = []
for word in data:
bbox = word['bbox']
if iob(bbox, crop_bbox) >= 0.5:
bbox = [bbox[0]-crop_bbox[0],
bbox[1]-crop_bbox[1],
bbox[2]-crop_bbox[0],
bbox[3]-crop_bbox[1]]
word['bbox'] = bbox
padded_words.append(word)
padded_words_filepath = os.path.join(words_output_directory,
file.replace('.xml', '_words.json'))
with open(padded_words_filepath, 'w') as jf:
json.dump(padded_words, jf)
if __name__ == "__main__":
main()