-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathbuilder.py
executable file
·761 lines (652 loc) · 29.5 KB
/
builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
#type: ignore
"""
Greynir: Natural language processing for Icelandic
Document index builder & topic tagger module
Copyright (C) 2023 Miðeind ehf.
Original author: Vilhjálmur Þorsteinsson
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.
This module is written in Python 3
This module reads articles from the Greynir article database as bags-of-words
and indexes them using Latent Semantic Indexing (LSI, also called Latent Semantic
Analysis, LSA), with indexes generated with the help of the Gensim document
processing module.
The indexing proceeds in stages (cf. https://radimrehurek.com/gensim/tut2.html):
1) Conversion of article contents (taken from the words database table)
into a corpus stream, yielding each article as a bag-of-words
via the CorpusIterator class. Note that the words database table has
already been filtered so that it only contains significant verbs,
nouns, adjectives and person and entity names - all normalized
(i.e. verbs to 'nafnháttur', nouns to nominative singular, and
adjectives to normal nominative singular masculine).
2) Generation of a Gensim dictionary (vocabulary) across the corpus stream,
cutting out rare words, resulting in a word count vector
3) Calculation of word weights from the dictionary via the TFIDF algorithm,
generating a TFIDF vector (TFIDF=term frequency–inverse document frequency,
cf. http://www.tfidf.com/)
4) Generation of the LSI lower-dimensionality model (matrix) from the corpus
after transformation of each document through the TFIDF vector
After the LSI model has been generated, it can be used to calculate LSI
vectors for any set of words. We calculate such vectors for each topic
in the topics database table by using the topic keywords as input for each
LSI vector. Subsequently, the closeness of any article to a topic can be
estimated by calculating the cosine similarity between the article's LSI
vector and the topic's LSI vector.
"""
import sys
import getopt
import json
import time
from datetime import datetime, timezone
from settings import Settings, Topics, NoIndexWords
from db import SessionContext
from db.models import Article, Topic, ArticleTopic, Word
from db.sql import TermTopicsQuery
from similar import SimilarityClient
import numpy as np
from gensim import corpora, models, matutils
def _now() -> datetime:
"""Return the current time in UTC"""
return datetime.now(timezone.utc)
def w_from_stem(stem, cat):
"""Convert a (stem, cat) tuple to a bag-of-words key"""
return stem.lower().replace("-", "").replace(" ", "_") + "/" + cat
class CorpusIterator:
"""Iterate through the Greynir words database, yielding a bag-of-words
for each article"""
def __init__(self, dictionary=None):
self._dictionary = dictionary
def __iter__(self):
"""Iterate through articles (documents)"""
print("Starting iteration through corpus from words table")
if self._dictionary is not None:
xform = lambda x: self._dictionary.doc2bow(x)
else:
xform = lambda x: x
with SessionContext(commit=True) as session:
# Fetch bags of words sorted by articles
q = (
session.query(Word.article_id, Word.stem, Word.cat, Word.cnt)
.order_by(Word.article_id)
.yield_per(2000)
)
bag = []
last_uuid = None
for uuid, stem, cat, cnt in q:
if uuid != last_uuid:
if bag:
# Finishing the last article: yield its bag
# print("Yielding bag of {0} words".format(len(bag)))
yield xform(bag)
bag = []
# Beginning a new article with an empty bag
last_uuid = uuid
# Convert stem to lowercase and replace spaces with underscores
w = w_from_stem(stem, cat)
if cnt == 1:
bag.append(w)
else:
bag.extend([w] * cnt)
if (last_uuid is not None) and bag:
# print("Yielding bag of {0} words".format(len(bag)))
yield xform(bag)
print("Finished iteration through corpus from words table")
class ReynirDictionary(corpora.Dictionary):
"""Subclass of gensim.corpora.Dictionary that adds a __contains__
operator for easy membership check"""
def __init__(self, iterator):
super().__init__(iterator)
def __contains__(self, word):
return word in self.token2id
class ReynirCorpus:
"""Wraps the document indexing functionality"""
# Default number of dimensions in topic vectors
_DEFAULT_DIMENSIONS = 200
# Work file names
_DICTIONARY_FILE = "./models/reynir.dict"
_PLAIN_CORPUS_FILE = "./models/corpus.mm"
_TFIDF_CORPUS_FILE = "./models/corpus-tfidf.mm"
_TFIDF_MODEL_FILE = "./models/tfidf.model"
_LSI_MODEL_FILE = "./models/lsi-{0}.model"
_LDA_MODEL_FILE = "./models/lda-{0}.model"
def __init__(self, verbose=False, dimensions=None):
self._verbose = verbose
self._dictionary = None
self._tfidf = None
self._model = None
self._model_name = None
self._topics = None
self._dimensions = dimensions or ReynirCorpus._DEFAULT_DIMENSIONS
@property
def dimensions(self):
return self._dimensions
def create_dictionary(self):
"""Iterate through the article database
and create a fresh Gensim dictionary"""
ci = CorpusIterator()
dic = ReynirDictionary(ci)
# Drop words that only occur only once or twice in the entire set
dic.filter_extremes(no_below=3, keep_n=None)
dic.save(self._DICTIONARY_FILE)
self._dictionary = dic
def load_dictionary(self):
"""Load a dictionary from a previously prepared file"""
self._dictionary = ReynirDictionary.load(self._DICTIONARY_FILE)
def create_plain_corpus(self):
"""Create a plain vector corpus, where each vector represents a
document. Each element of the vector contains the count of
the corresponding word (as indexed by the dictionary) in
the document."""
if self._dictionary is None:
self.load_dictionary()
dci = CorpusIterator(dictionary=self._dictionary)
corpora.MmCorpus.serialize(self._PLAIN_CORPUS_FILE, dci)
def load_plain_corpus(self):
"""Load the plain corpus from file"""
return corpora.MmCorpus(self._PLAIN_CORPUS_FILE)
def create_tfidf_model(self):
"""Create a fresh TFIDF model from a dictionary"""
if self._dictionary is None:
self.load_dictionary()
tfidf = models.TfidfModel(dictionary=self._dictionary)
tfidf.save(self._TFIDF_MODEL_FILE)
self._tfidf = tfidf
def load_tfidf_model(self):
"""Load an already generated TFIDF model"""
self._tfidf = models.TfidfModel.load(self._TFIDF_MODEL_FILE, mmap="r")
def create_tfidf_corpus(self):
"""Create a TFIDF corpus from a plain vector corpus"""
if self._tfidf is None:
self.load_tfidf_model()
corpus = self.load_plain_corpus()
corpus_tfidf = self._tfidf[corpus]
corpora.MmCorpus.serialize(self._TFIDF_CORPUS_FILE, corpus_tfidf)
def load_tfidf_corpus(self):
"""Load a TFIDF corpus from file"""
return corpora.MmCorpus(self._TFIDF_CORPUS_FILE)
def create_lsi_model(self, **kwargs):
"""Create an LSI model from the entire words database table"""
corpus_tfidf = self.load_tfidf_corpus()
if self._dictionary is None:
self.load_dictionary()
# Initialize an LSI transformation
lsi = models.LsiModel(
corpus_tfidf,
id2word=self._dictionary,
num_topics=self._dimensions,
**kwargs
)
# if self._verbose:
# lsi.print_topics(num_topics = self._dimensions)
# Save the generated model
lsi.save(self._LSI_MODEL_FILE.format(self._dimensions))
def load_lsi_model(self):
"""Load a previously generated LSI model"""
self._model = models.LsiModel.load(
self._LSI_MODEL_FILE.format(self._dimensions), mmap="r"
)
self._model_name = "lsi"
def create_lda_model(self, **kwargs):
"""Create a Latent Dirichlet Allocation (LDA) model from the
entire words database table"""
corpus_tfidf = self.load_tfidf_corpus()
if self._dictionary is None:
self.load_dictionary()
# Initialize an LDA transformation
lda = models.LdaMulticore(
corpus_tfidf,
id2word=self._dictionary,
num_topics=self._dimensions,
**kwargs
)
if self._verbose:
lda.print_topics(num_topics=self._dimensions)
# Save the generated model
lda.save(self._LDA_MODEL_FILE.format(self._dimensions))
def load_lda_model(self):
"""Load a previously generated LDA model"""
self._model = models.LdaMulticore.load(
self._LDA_MODEL_FILE.format(self._dimensions), mmap="r"
)
self._model_name = "lda"
def calculate_topics(self):
"""Recalculate the topic vectors in the topics database table"""
if self._dictionary is None:
self.load_dictionary()
if self._tfidf is None:
self.load_tfidf_model()
if self._model is None:
self.load_lsi_model()
if self._verbose:
print("Calculating topics")
with SessionContext(commit=True) as session:
for topic in session.query(Topic).all():
if self._verbose:
print("Topic {0}".format(topic.name))
if topic.name in Topics.DICT:
# Overwrite the existing keywords
keywords = list(Topics.DICT[topic.name]) # Convert set to list
topic.keywords = " ".join(keywords)
# Set the identifier
topic.identifier = Topics.ID[topic.name]
# Set the threshold
topic.threshold = Topics.THRESHOLD[topic.name]
else:
# Use the ones that are already there
keywords = topic.keywords.split()
assert all("/" in kw for kw in keywords) # Must contain a slash
if self._verbose:
print("Keyword list: {0}".format(keywords))
bag = self._dictionary.doc2bow(keywords)
tfidf = self._tfidf[bag]
vec = self._model[tfidf]
if self._verbose:
if self._model_name == "lda":
print("LDA: {0}".format(vec))
for t, _ in vec:
print("Topic #{0}".format(t))
wt = self._model.get_topic_terms(t, topn=25)
for word, wprob in wt:
print(
" {0} has probability {1:.3f}".format(
self._dictionary.get(word), wprob
)
)
elif self._model_name == "lsi":
pass
# self._model.print_debug(num_topics = 20)
# Update the vector field, setting it to a JSON vector value
d = {}
d[self._model_name] = [(int(ix), float(f)) for ix, f in vec]
topic.vector = json.dumps(d)
def load_topics(self):
"""Load the topics into a dict of topic vectors by topic id"""
self._topics = {}
with SessionContext(commit=True) as session:
for topic in session.query(Topic).all():
if topic.vector:
topic_vector = json.loads(topic.vector)[self._model_name]
if topic_vector:
self._topics[topic.id] = dict(
name=topic.name,
vector=topic_vector,
threshold=topic.threshold,
)
def get_topic_vector(self, terms):
"""Calculate a topic vector corresponding to the given list
of search terms, which are assumed to have the form (stem, category).
Return the topic vector as well as a list of weights of
each search term"""
if self._dictionary is None:
self.load_dictionary()
if self._tfidf is None:
self.load_tfidf_model()
if self._model is None:
self.load_lsi_model()
# Convert the word list, assumed to contain items of the form 'stem/cat',
# to a bag of word indexes
wlist = [w_from_stem(stem, cat) for stem, cat in terms]
bag = self._dictionary.doc2bow(wlist)
print("Search terms:\n {0}".format(terms))
if bag:
# We have some terms in the bag (i.e. they were in the dictionary)
# Apply the term frequency - inverse document frequency transform
tfidf = self._tfidf[bag]
# Map the resulting vector to the LSI model space
topic_vector = np.array([float(x) for _, x in self._model[tfidf]])
else:
# No bag, we're just going to use word occurrences
topic_vector = np.zeros(self._dimensions)
# For words that we want to look up from the words table, calculate a
# weighted average of the topic vectors of documents where those
# words appear
missing = np.zeros(self._dimensions)
weight_missing = 0.0
lb = len(bag)
term_weights = []
# We have missing words: look'em up
with SessionContext(commit=True, read_only=True) as session:
# The same (stem, cat) tuple may appear multiple times:
# coalesce into one counting dictionary
for index, (stem, cat) in enumerate(terms):
def word_lookup_weight(stem, cat):
"""Does this term call for a lookup in the words database table?"""
if cat == "entity" or cat.startswith("person"):
# We look up all entity and person names
# and give them extra weight
return 2.0
if cat in {"kk", "kvk", "hk"} and stem[0].isupper() and index > 0:
# Noun starting with a capital letter, not the first word in a sentence:
# assume it's a proper name and do a lookup with a weight of 1.6
return 1.6
w = w_from_stem(stem, cat)
if isinstance(self._dictionary, ReynirDictionary):
in_dict = w in self._dictionary
else:
# !!! TODO: This else-branch can be removed once a new
# !!! ReynirDictionary has been built and pickled
in_dict = w in self._dictionary.token2id
# Without further reason, we don't look up terms that already
# exist in the LSI model dictionary. For other terms, they
# appear to be rare and we give them a slight overweight if
# they are found in the words table.
return 0.0 if in_dict else 1.2
weight = word_lookup_weight(stem, cat)
if weight == 0.0:
# If weight is 0.0, we don't need to bother
# (This means that the word is in the LSI model dictionary
# and not special in any way. From the overall search term
# point of view, we give it a weight of 1.0)
term_weights.append(1.0)
continue
if (
cat in NoIndexWords.CATEGORIES_TO_INDEX
and (stem, cat) not in NoIndexWords.SET
):
# We have a significant (potentially indexable)
# person, entity, noun, adjective or verb. Give it
# a weight in the final topic vector.
def clean(stem):
"""Eliminate composite word hyphens from the stem"""
if "- og " in stem or "- eða " in stem:
# Leave 'iðnaðar- og viðskiptaráðuneyti' alone
return stem
# We want to keep other types of hyphens (surrounded by spaces)
# such as 'Vestur - Íslendingar'
a = stem.split(" - ")
return " - ".join(p.replace("-", "") for p in a)
clean_stem = clean(stem)
q = TermTopicsQuery().execute(
session, stem=clean_stem, cat=cat, limit=25
)
term_vector = np.zeros(self._dimensions)
total_cnt = 0
# Sum up the topic vectors of the documents where the term
# appears, weighted by the number of times it appears
# print("Found stem/cat '{0}'/{1} in {2} documents via words table".format(clean_stem, cat, len(q)))
for tv_json, cnt in q:
# Get the term vector of a single document where the term appears
if tv_json and cnt:
tv = np.array(json.loads(tv_json))
# Multiply the vector by the number of times the term appears
total_cnt += cnt
term_vector += tv * cnt
# Add the combined (weighted average) topic vector of the
# term to the 'missing' topic vector
if total_cnt > 0:
missing += (term_vector / total_cnt) * weight
# Keep track of how many 'missing' terms have contributed
# to the missing term vector
weight_missing += weight
term_weights.append(weight)
else:
# Not found in the words table: this term contributes nothing
term_weights.append(0.0)
else:
# print("Discarding term {0} (weight {1:.1f})".format(w_from_stem(stem, cat), weight))
term_weights.append(0.0)
assert len(terms) == len(term_weights)
if weight_missing > 0.0:
# Adjust the weight of the returned topic vector so that the missing
# terms have a contribution that corresponds to their number
p_tv = lb / (lb + weight_missing)
# Calculate the relative contribution of the missing terms
p_m = 1.0 - p_tv
# Amalgamate the resulting topic vector
topic_vector = topic_vector * p_tv + missing * p_m
return topic_vector, term_weights
def assign_article_topics(self, article_id, heading, process_all=False):
"""Assign the appropriate topics to the given article in the database"""
if self._dictionary is None:
self.load_dictionary()
if self._tfidf is None:
self.load_tfidf_model()
if self._model is None:
self.load_lsi_model()
if self._topics is None:
self.load_topics()
with SessionContext(commit=True) as session:
q = (
session.query(Word.stem, Word.cat, Word.cnt)
.filter(Word.article_id == article_id)
.all()
)
wlist = []
for stem, cat, cnt in q:
# Convert stem to lowercase and replace spaces with underscores
w = w_from_stem(stem, cat)
if cnt == 1:
wlist.append(w)
else:
wlist.extend([w] * cnt)
topics = []
article_vector = []
if self._topics and wlist:
bag = self._dictionary.doc2bow(wlist)
tfidf = self._tfidf[bag]
article_vector = self._model[tfidf]
topic_names = []
if self._verbose:
print("{0} : {1}".format(article_id, heading))
for topic_id, topic_info in self._topics.items():
topic_name = topic_info["name"]
topic_vector = topic_info["vector"]
topic_threshold = topic_info["threshold"]
# Calculate the cosine similarity between the article and the topic
similarity = matutils.cossim(article_vector, topic_vector)
if self._verbose:
print(
" Similarity to topic {0} is {1:.3f}".format(
topic_name, similarity
)
)
if similarity >= topic_threshold:
# Similar enough: this is a topic of the article
topics.append(topic_id)
topic_names.append((topic_name, similarity))
if topic_names and not process_all:
print("Article '{0}':\n topics {1}".format(heading, topic_names))
# Topics found (if any): delete previous ones (if any)
session.execute(
ArticleTopic.table()
.delete()
.where(ArticleTopic.article_id == article_id)
)
# ...and add the new ones
for topic_id in topics:
session.add(ArticleTopic(article_id=article_id, topic_id=topic_id))
# Update the indexed timestamp and the article topic vector
a = session.query(Article).filter(Article.id == article_id).one_or_none()
if a is not None:
a.indexed = _now()
if article_vector:
# Store a pure list of floats
topic_vector = [t[1] for t in article_vector]
a.topic_vector = json.dumps(topic_vector)
else:
a.topic_vector = None
def assign_topics(self, limit=None, process_all=False, uuid=None):
"""Assign topics to all articles that have no such assignment yet"""
with SessionContext(commit=True) as session:
# Fetch articles that haven't been indexed (or have been parsed since),
# and that have at least one associated Word in the words table.
q = session.query(Article.id, Article.heading)
if uuid:
q = q.filter(Article.id == uuid)
elif not process_all:
q = q.filter(
(Article.indexed == None) | (Article.indexed < Article.parsed)
)
q = q.join(Word).group_by(Article.id, Article.heading)
if uuid:
q = q.all()
elif limit is None:
q = q.yield_per(2000)
else:
q = q[0:limit]
for article_id, heading in q:
self.assign_article_topics(article_id, heading, process_all=process_all)
def build_model(verbose=False):
"""Build a new model from the words (and articles) table"""
print("------ Greynir starting model build -------")
ts = "{0}".format(_now())[0:19]
print("Time: {0}".format(ts))
t0 = time.time()
rc = ReynirCorpus(verbose=verbose)
print("Creating dictionary")
rc.create_dictionary()
print("Creating plain corpus")
rc.create_plain_corpus()
print("Creating TF-IDF model")
rc.create_tfidf_model()
print("Creating TF-IDF corpus")
rc.create_tfidf_corpus()
# rc.create_lda_model(passes = 15)
print("Creating LSI model")
rc.create_lsi_model()
t1 = time.time()
print("\n------ Model build completed -------")
print("Total time: {0:.2f} seconds".format(t1 - t0))
ts = "{0}".format(_now())[0:19]
print("Time: {0}\n".format(ts))
def calculate_topics(verbose=False):
"""Recalculate topic vectors from keywords"""
print("------ Greynir recalculating topic vectors -------")
rc = ReynirCorpus(verbose=verbose)
rc.load_lsi_model()
rc.calculate_topics()
print("------ Greynir recalculation complete -------")
def tag_articles(limit, verbose=False, process_all=False, uuid=None):
"""Tag all untagged articles or articles that
have been parsed since they were tagged"""
print("------ Greynir starting tagging -------")
if uuid:
print("Tagging article {0}".format(uuid))
elif process_all:
print("Processing all articles")
elif limit:
print("Limit: {0} articles".format(limit))
ts = "{0}".format(_now())[0:19]
print("Time: {0}".format(ts))
t0 = time.time()
rc = ReynirCorpus(verbose=verbose)
rc.load_lsi_model()
rc.assign_topics(limit, process_all, uuid)
t1 = time.time()
print("\n------ Tagging completed -------")
print("Total time: {0:.2f} seconds".format(t1 - t0))
ts = "{0}".format(_now())[0:19]
print("Time: {0}\n".format(ts))
def notify_similarity_server():
"""Notify the similarity server - if running - that article tags have been updated"""
try:
client = SimilarityClient()
client.refresh_topics()
client.close()
except Exception as e:
print("Exception in notify_similarity_server(): {0}".format(e))
class Usage(Exception):
def __init__(self, msg):
self.msg = msg
__doc__ = """
Greynir - Natural language processing for Icelandic
Index builder and tagger module
Usage:
python builder.py [options] command [arguments]
Options:
-h, --help : Show this help text
-l N, --limit=N : Limit processing to N articles
-a, --all : Process all articles
-v, --verbose : Show diagnostics while processing
Commands:
tag [uuid] : tag any untagged articles (or the article with the given uuid)
topics : recalculate topic vectors from keywords
model : rebuild dictionary and model from parsed articles
"""
def _main(argv=None):
if argv is None:
argv = sys.argv
try:
try:
opts, args = getopt.getopt(
argv[1:], "hl:van", ["help", "limit=", "verbose", "all", "notify"]
)
except getopt.error as msg:
raise Usage(msg)
limit_specified = False
limit = 10
verbose = False
process_all = False
notify = False
# Process options
for o, a in opts:
if o in ("-h", "--help"):
print(__doc__)
return 0
elif o in ("-l", "--limit"):
# Maximum number of articles to parse
try:
limit = int(a)
limit_specified = True
except ValueError:
pass
elif o in ("-v", "--verbose"):
verbose = True
elif o in ("-a", "--all"):
process_all = True
elif o in ("-n", "--notify"):
notify = True
# if process_all and limit_specified:
# raise Usage("--all and --limit cannot be used together")
Settings.read("Vectors.conf")
# Process arguments
if not args:
raise Usage("No command specified")
la = len(args)
arg = args[0]
if arg == "tag":
# Tag articles
uuid = args[1] if la > 1 else None
if la > (1 if uuid is None else 2):
raise Usage("Too many arguments")
if uuid:
if process_all:
raise Usage("Conflict between uuid argument and --all option")
if limit_specified:
raise Usage("Conflict between uuid argument and --limit option")
if process_all and not limit_specified:
limit = None
tag_articles(
limit=limit, verbose=verbose, process_all=process_all, uuid=uuid
)
if notify:
# Inform the similarity server that we have new article tags
notify_similarity_server()
elif arg == "topics":
# Calculate topics
if la > 1:
raise Usage("Too many arguments")
calculate_topics(verbose=verbose)
elif arg == "model":
# Rebuild model
if la > 1:
raise Usage("Too many arguments")
build_model(verbose=verbose)
else:
raise Usage("Unknown command: '{0}'".format(arg))
except Usage as err:
print(err.msg, file=sys.stderr)
print("For help use --help", file=sys.stderr)
return 2
# Completed with no error
return 0
if __name__ == "__main__":
sys.exit(_main())