-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcfl.py
executable file
·41 lines (34 loc) · 1.13 KB
/
cfl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Copyright 2013-2015. The Regents of the University of California.
# All rights reserved. Use of this source code is governed by
# a BSD-style license which can be found in the LICENSE file.
#
# Authors:
# 2013 Martin Uecker <[email protected]>
# 2015 Jonathan Tamir <[email protected]>
import numpy as np
def readcfl(name):
# get dims from .hdr
h = open(name + ".hdr", "r")
h.readline() # skip
l = h.readline()
h.close()
dims = [int(i) for i in l.split( )]
# remove singleton dimensions from the end
n = np.prod(dims)
dims_prod = np.cumprod(dims)
dims = dims[:np.searchsorted(dims_prod, n)+1]
# load data and reshape into dims
d = open(name + ".cfl", "r")
a = np.fromfile(d, dtype=np.complex64, count=n);
d.close()
return a.reshape(dims, order='F') # column-major
def writecfl(name, array):
h = open(name + ".hdr", "w")
h.write('# Dimensions\n')
for i in (array.shape):
h.write("%d " % i)
h.write('\n')
h.close()
d = open(name + ".cfl", "w")
array.T.astype(np.complex64).tofile(d) # tranpose for column-major order
d.close()