-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
344 lines (330 loc) · 16.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-108642042-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-108642042-1');
</script>
<meta name=viewport content="width=800">
<meta name="generator" content="HTML Tidy for Linux/x86 (vers 11 February 2007), see www.w3.org">
<style type="text/css">
/* Color scheme stolen from Sergey Karayev */
a {
color: #1772d0;
text-decoration:none;
}
a:focus, a:hover {
color: #f09228;
text-decoration:none;
}
body,td,th,tr,p,a {
font-family: 'Lato', Verdana, Helvetica, sans-serif;
font-size: 14px
}
strong {
font-family: 'Lato', Verdana, Helvetica, sans-serif;
font-size: 14px;
}
heading {
font-family: 'Lato', Verdana, Helvetica, sans-serif;
font-size: 22px;
}
papertitle {
font-family: 'Lato', Verdana, Helvetica, sans-serif;
font-size: 14px;
font-weight: 700
}
name {
font-family: 'Lato', Verdana, Helvetica, sans-serif;
font-size: 32px;
}
.one
{
width: 160px;
height: 160px;
position: relative;
}
.two
{
width: 160px;
height: 160px;
position: absolute;
transition: opacity .2s ease-in-out;
-moz-transition: opacity .2s ease-in-out;
-webkit-transition: opacity .2s ease-in-out;
}
.fade {
transition: opacity .2s ease-in-out;
-moz-transition: opacity .2s ease-in-out;
-webkit-transition: opacity .2s ease-in-out;
}
span.highlight {
background-color: #ffffd0;
}
div {
width: 21%;
float: left;
margin: 5px;
padding: 10px;
}
img {
display: block;
margin: auto;
}
.fixed {
height: 50px;
}
.clear {
clear: both;
}
</style>
<title>Michail Iliadis</title>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<!--<link href='http://fonts.googleapis.com/css?family=Lato:400,700,400italic,700italic' rel='stylesheet' type='text/css'>-->
</head>
<body>
<table width="900" border="0" align="center" cellspacing="0" cellpadding="0">
<tr>
<td>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="20">
<tr>
<td width="67%" valign="middle">
<p align="center">
<name>Michail Iliadis</name>
</p>
<p>I am a Sr. Research Engineer at <a href="https://www.apple.com/">Apple</a>. I am currently focusing on image and video understanding with the goal to provide the best on-device human experiences!
<p>
Prior to Apple, I was a Sr. Research Scientist at <a href="https://www.clarifai.com/">Clarifai</a> working on building a computer vision platform and an Applied Scientist at <a href="https://www.vidado.ai/">Vidado.ai</a> working in document image analysis. Before Clarifai and Vidado, I was a Research Scientist at <a href="https://www.sony.com/">SONY US Research Center</a> where I worked on semantic segmentation for limited resource computing devices.
</p>
<p> I received my Ph.D. in EECS from <a href="http://www.mccormick.northwestern.edu/eecs/">Northwestern University</a> in 2016 where I worked under the supervision of <a href="https://ivpl.northwestern.edu/people/current-members/aggelos-katsaggelos/">Aggelos K. Katsaggelos</a> in the <a href="http://ivpl.northwestern.edu/">Image and Video Laboratory (IVPL)</a>.
</p>
<p align=center>
<a href="mailto:[email protected]">Email</a>  / 
<a href="cv/Michail_Iliadis_Resume.pdf">Resume</a>  / 
<a href="https://drive.google.com/file/d/0B7R_i0KPrubMMW43bm9HNGEtM1U/view?usp=sharing">Thesis</a>  / 
<a href="https://scholar.google.com/citations?user=eitRqV0AAAAJ&hl=en">Google Scholar</a>  / 
<a href="https://www.linkedin.com/in/miliadis/"> LinkedIn </a>
</p>
</td>
<td width="33%">
<img src="images/profile_apple.jpg" height="220">
</td>
</tr>
</table>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="20">
<tr>
<td width="67%" valign="middle">
<div class='fixed'>
<img src="https://miliadis.github.io/images/logos/apple_logo.png" width="40" height="40">
<p align=center>2022 - Present</p>
</div>
<div class='fixed'>
<img src="https://miliadis.github.io/images/logos/clarifai.png" width="180" height="40">
<p align=center>2020 - 2022</p>
</div>
<div class="fixed">
<img src="https://miliadis.github.io/images/logos/vidado3.jpeg" width="180" height="40">
<p align=center>2017 - 2020</p>
</div>
<div class="fixed">
<img src="https://miliadis.github.io/images/logos/sony2.png" width="180" height="40">
<p align=center>2016 - 2017</p>
</div>
</td>
</tr>
</table>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="20">
<tr>
<td width="100%" valign="middle">
<heading>Research</heading>
<p>
My research has been focused in video compressive sensing for perceived quality video reconstruction and recognition. The methodologies and techniques I have applied include sparsity-seeking optimization and deep learning based models. My current research goal is to understand human-objects relations in images and videos and building efficient on-device representations. Relevant tasks I have worked on recently include object detection, human pose estimation and vision-language models.
</p>
</td>
</tr>
</table>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="20">
<tr>
<td width="25%" valign="top"><img src="images/papers/deep_binarymask.png" width="233" height="180"></td>
<td width="75%" valign="top">
<p>
<a href="papers/Binary_Mask_Arxiv.pdf">
<papertitle>DeepBinaryMask: Learning a Binary Mask for Video Compressive Sensing</papertitle>
</a>
<br>
<strong>Michael Iliadis</strong>, <a href="http://ivpl.eecs.northwestern.edu/users/LSpinoulas">Leonidas Spinoulas</a>, <a href="http://ivpl.eecs.northwestern.edu/users/akatsaggelos/">Aggelos K. Katsaggelos</a><br>
<em>Elsevier Digital Signal Processing</em>, 2020<br>
<a href="papers/bib/Iliadis_Deep_Binary.bib">bibtex</a> / <a href="https://github.com/miliadis/DeepVideoCS">code & data</a>
</p>
<p>We propose a novel encoder-decoder neural network model called DeepBinaryMask for video compressive sensing. The proposed framework is an end-to-end model where the sensing matrix is trained along with the video reconstruction.<br></p>
</td>
</tr>
<tr>
<td width="25%" valign="top"><img src="images/papers/dnn_inverse.png" width="233" height="180"></td>
<td width="75%" valign="top">
<p>
<a href="papers/DNN_Inverse_Problems.pdf">
<papertitle>Using Deep Neural Networks for Inverse Problems in Imaging</papertitle>
</a>
<br>
<a href="https://www.ideas.ciera.northwestern.edu/trainees/alice-lucas/">Alice Lucas</a>, <strong>Michael Iliadis</strong>, <a href="http://decsai.ugr.es/~rms/">Rafael Molina</a>, <a href="http://ivpl.eecs.northwestern.edu/users/akatsaggelos/">Aggelos K. Katsaggelos</a><br>
<em> IEEE Signal Processing Magazine (SPM)</em>, 2018<br>
<a href="papers/bib/Iliadis_SPM2018.bib">bibtex</a>
</p>
<p>We review the popular neural network architectures used for imaging tasks, offering some insight as to how these deep-learning tools can solve the inverse problem.<br></p>
</td>
</tr>
<tr>
<td width="25%" valign="top"><img src="images/papers/deep_videocs.png" width="233" height="180"></td>
<td width="75%" valign="top">
<p>
<a href="papers/Deep_Video_CS.pdf">
<papertitle>Deep Fully-Connected Networks for Video Compressive Sensing</papertitle>
</a>
<br>
<strong>Michael Iliadis</strong>, <a href="http://ivpl.eecs.northwestern.edu/users/LSpinoulas">Leonidas Spinoulas</a>, <a href="http://ivpl.eecs.northwestern.edu/users/akatsaggelos/">Aggelos K. Katsaggelos</a><br>
<em>Elsevier Digital Signal Processing</em>, 2018<br>
<a href="deep_cs_project.html">project page</a> / <a href="papers/bib/Iliadis_DSP2017.bib">bibtex</a> / <a href="https://github.com/miliadis/DeepVideoCS">code & data</a> / <a href="images/projects/deep_cs/SupplementaryMaterial_Deep_VideoCS.pptx">supplement</a>
</p>
<p>A deep learning framework for video compressive sensing.<br></p>
</td>
</tr>
<tr>
<td width="25%" valign="top"><img src="images/papers/face_occlusion.png" width="233" height="180"></td>
<td width="75%" valign="top">
<p>
<a href="papers/Face_TIP.pdf">
<papertitle>Robust and Low-Rank Representation for Fast Face Identification with Occlusions</papertitle>
</a>
<br>
<strong>Michael Iliadis</strong>, <a href="http://users.eecs.northwestern.edu/~haohong/">Haohong Wang</a>, <a href="http://decsai.ugr.es/~rms/">Rafael Molina</a>, <a href="http://ivpl.eecs.northwestern.edu/users/akatsaggelos/">Aggelos K. Katsaggelos</a><br>
<em>IEEE Transactions on Image Processing (TIP)</em>, 2017<br>
<a href="papers/bib/Iliadis_TIP2017.bib">bibtex</a> / <a href="https://github.com/miliadis/FIRC">code</a>
</p>
<p>A fast iterative method to address the face identification problem with block occlusions.<br></p>
</td>
</tr>
<tr>
<td width="25%" valign="top"><img src="images/papers/multi_modal_face.png" width="233" height="180"></td>
<td width="75%" valign="top">
<p>
<a href="papers/Face_ICIP.pdf">
<papertitle>Multi-Model Robust Error Correction for Face Recognition</papertitle>
</a>
<br>
<strong>Michael Iliadis</strong>, <a href="http://ivpl.eecs.northwestern.edu/users/LSpinoulas">Leonidas Spinoulas</a>, <a href="https://sites.google.com/a/u.northwestern.edu/albertsberahas/home">Albert S. Berahas</a>, <a href="http://users.eecs.northwestern.edu/~haohong/">Haohong Wang</a>, <a href="http://ivpl.eecs.northwestern.edu/users/akatsaggelos/">Aggelos K. Katsaggelos</a><br>
<em>International Conference Image Processing (ICIP)</em>, 2016<br>
<a href="papers/bib/Iliadis_ICIP2016_face.bib">bibtex</a>
</p>
<p>The proposed formulation allows the simultaneous use of various loss functions for modeling the residual in face images.<br></p>
</td>
</tr>
<tr>
<td width="25%" valign="top"><img src="images/papers/video_alignment.png" width="233" height="180"></td>
<td width="75%" valign="top">
<p>
<a href="papers/ICIP_video_align.pdf">
<papertitle>Block Based Video Alignment with Linear time and Space Complexity</papertitle>
</a>
<br>
<a href="https://scholar.google.com/citations?user=l6dM7C0AAAAJ&hl=en">Armin Kappeler</a>, <strong>Michael Iliadis</strong>, <a href="http://users.eecs.northwestern.edu/~haohong/">Haohong Wang</a>, <a href="http://ivpl.eecs.northwestern.edu/users/akatsaggelos/">Aggelos K. Katsaggelos</a><br>
<em>International Conference Image Processing (ICIP)</em>, 2016<br>
<a href="papers/bib/Iliadis_ICIP2016_align.bib">bibtex</a>
</p>
<p>We propose a fast, robust and memory efficient video sequence alignment algorithm which has linear space and time complexity.</p>
</td>
</tr>
<tr>
<td width="25%" valign="top"><img src="images/papers/face_sparse.jpg" width="233" height="180"></td>
<td width="75%" valign="top">
<p>
<a href="papers/iliadis_EUSIPCO2014.pdf">
<papertitle>Sparse Representation and Least Squares-based Classification in Face Recognition</papertitle>
</a>
<br>
<strong>Michael Iliadis</strong>, <a href="http://ivpl.eecs.northwestern.edu/users/LSpinoulas">Leonidas Spinoulas</a>, <a href="https://sites.google.com/a/u.northwestern.edu/albertsberahas/home">Albert S. Berahas</a>, <a href="http://users.eecs.northwestern.edu/~haohong/">Haohong Wang</a>, <a href="http://ivpl.eecs.northwestern.edu/users/akatsaggelos/">Aggelos K. Katsaggelos</a><br>
<em>European Signal Processing Conference (EUSIPCO)</em>, 2014<br>
<a href="papers/bib/Iliadis_EUSIPCO2014.bib">bibtex</a> / <a href="https://github.com/miliadis/SRC-RLS">code</a>
</p>
<p>Effectively, our method combines the sparsity-based approaches with additional least-squares steps.<br></p>
</td>
</tr>
<tr>
<td width="25%" valign="top"><img src="images/papers/virtual_touring_img.png" width="233" height="180"></td>
<td width="75%" valign="top">
<p>
<a href="papers/iliadis_ICMEW2013.pdf">
<papertitle>Virtual touring - A Content Based Image Retrieval application</papertitle>
</a>
<br>
<strong>Michael Iliadis</strong>, <a href="https://sites.google.com/site/seunghwanandrewyoo/">Seunghwan Yoo</a>, <a href="https://scholar.google.com/citations?user=RxCW-BcAAAAJ&hl=en">Xin Xin</a>, <a href="http://ivpl.eecs.northwestern.edu/users/akatsaggelos/">Aggelos K. Katsaggelos</a><br>
<em>International Conference on Multimedia and Expo Workshops (ICMEW)</em>, 2013<br>
<a href="papers/bib/Iliadis_ICMEW2013.bib">bibtex</a>
</p>
<p>A content based image retrieval application for searching landmarks and buildings in a city using a smartphone.</p>
</td>
</tr>
<tr>
<td width="25%" valign="top"><img src="images/papers/vcs_img.png" width="233" height="180"></td>
<td width="75%" valign="top">
<p>
<p>
<a href="papers/iliadis_ICIP2013.pdf">
<papertitle>Video Compressive Sensing using Multiple Measurement Vectors</papertitle>
</a>
<br>
<strong>Michael Iliadis</strong>, <a href="http://ivpl.eecs.northwestern.edu/users/JWatt">Jeremy Watt</a>, <a href="http://ivpl.eecs.northwestern.edu/users/LSpinoulas">Leonidas Spinoulas</a>, <a href="http://ivpl.eecs.northwestern.edu/users/akatsaggelos/">Aggelos K. Katsaggelos</a><br>
<em>International Conference Image Processing (ICIP)</em>, 2013 <br>
<a href="papers/bib/Iliadis_ICIP2013.bib">bibtex</a>
/
<font color=red> Top 10% Paper Recognition</font>
<p></p>
<p>The approach takes advantage of Multiple Measurement Vectors (MMV), seeking for significantly sparser solutions, assuming that the solution vectors have similar sparsity structure.</p>
</td>
</tr>
</table>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="20">
<tr>
<td>
<heading>Teaching</heading>
</td>
</tr>
</table>
<table width="100%" align="center" border="0" cellpadding="20">
<tr>
<td width="25%"><img src="images/teaching.jpg" width="233" height="180"></td>
<td width="75%" valign="center">
<p>
<a href="http://www.mccormick.northwestern.edu/eecs/courses/descriptions/214.html">
<papertitle>EECS 214: Data Structures and Data Management - Spring 2015, 2016</papertitle>
</a>
<br><br>
<a href="http://www.mccormick.northwestern.edu/eecs/courses/descriptions/205-EA-1-1.html">
<papertitle>GEN_ENG 205: Engineering Analysis - Winter 2015</papertitle>
</a>
<br>
</p>
</td>
</tr>
</table>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="20">
<tr>
<td>
<br>
<p align="right">
<font size="2">
I copied the source code of this website from <a href="https://jonbarron.info/">here</a>.
</font>
</p>
</td>
</tr>
</table>
</td>
</tr>
</table>
</body>
</html>