This repository has been archived by the owner on Jul 24, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComparators.fractran.txt
288 lines (202 loc) · 4.7 KB
/
Comparators.fractran.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Comparators in FRACTRAN
## Greater Than
INPUT (n): 2^a * 3^b * 5^isGreater
OUTPUT: 5^isGreater
r2: a // first number
r3: b // second number
r5: isGreater // boolean; starts off at 1
### The Program
#### Pseudocode
while true {
if (r2 >= 1 && r3 >= 1) {
decrement a and b
} else if (r3 >= 1 && r5 >= 1) {
decrement b and isGreater
} else if (r2 >= 1) {
decrement a
} else if (r3 >= 1) {
decrement b
} else {
break
}
}
#### FRACTRAN
(
1 / 6,
1 / 15,
1 / 2,
1 / 3
)
### Analysis
This is essentially a subtraction algorithm with a state to hold the greater
than boolean. Once one of the values hits zero, we check to see if the remaining
value is the second value. If so, we flip the isGreater flag to false.
### Examples
#### Example 1
We will test that 5 > 2 is true. Our initial value (n) should be
2^5 * 3^2 * 5^1. Our result should be r5 == 1, which means true.
r2: 5
r3: 2
r5: 1
n: 2^5 * 3^2 * 5^1
Decrement both values until one reaches zero.
A: (2^5 * 3^2 * 5^1) * (1 / 2 * 3)
n: 2^4 * 3^1 * 5^1
Decrement both values until one reaches zero.
A: (2^4 * 3^1 * 5^1) * (1 / 2 * 3)
n: 2^3 * 5^1
Zero out remaining values.
C: (2^3 * 5^1) * (1 / 2)
n: 2^2 * 5^1
Zero out remaining values.
C: (2^2 * 5^1) * (1 / 2)
n: 2^1 * 5^1
Zero out remaining values.
C: (2^1 * 5^1) * (1 / 2)
n: 5^1
HALT
#### Example 2
We will test that 1 > 2 is true. Our initial value (n) should be
2^1 * 3^2 * 5^1. Our result should be r5 == 0, which means false.
r2: 1
r3: 2
r5: 1
n: 2^1 * 3^2 * 5^1
Decrement both values until one reaches zero.
A: (2^1 * 3^2 * 5^1) * (1 / 2 * 3)
n: 3^1 * 5^1
Remove isGreater flag
B: (3^1 * 5^1) * (1 / 15)
n: 1 or 5^0
HALT
## Less Than
INPUT (n): 2^a * 3^b * 5^isLess
OUTPUT: 5^isLess
r2: a // first number
r3: b // second number
r5: isLess // boolean; starts off at 1
### The Program
#### Pseudocode
while true {
if (r2 >= 1 && r3 >= 1) {
decrement a and b
} else if (r2 >= 1 && r5 >= 1) {
decrement b and isLess
} else if (r2 >= 1) {
decrement a
} else if (r3 >= 1) {
decrement b
} else {
break
}
}
#### FRACTRAN
(
1 / 6,
1 / 10,
1 / 2,
1 / 3
)
### Analysis
This is the same as above, but we change which variable we test at the end, from
the first to the second.
### Examples
#### Example 1
We will test that 2 < 3 is true. Our initial value (n) should be
2^2 * 3^3 * 5^1. Our result should be r5 == 1, which means true.
r2: 2
r3: 3
r5: 1
n: 2^2 * 3^3 * 5^1
Decrement both values until one reaches zero.
A: (2^2 * 3^3 * 5^1) * (1 / 2 * 3)
n: 2^1 * 3^2 * 5^1
Decrement both values until one reaches zero.
A: (2^1 * 3^2 * 5^1) * (1 / 2 * 3)
n: 3^1 * 5^1
Zero out remaining values.
D: (3^1 * 5^1) * (1 / 3)
n: 5^1
HALT
#### Example 2
We will test that 3 < 2 is true. Our initial value (n) should be
2^3 * 3^2 * 5^1. Our result should be r5 == 0, which means false.
r2: 3
r3: 2
r5: 1
n: 2^3 * 3^2 * 5^1
Decrement both values until one reaches zero.
A: (2^3 * 3^2 * 5^1) * (1 / 2 * 3)
n: 2^2 * 3^1 * 5^1
Decrement both values until one reaches zero.
A: (2^2 * 3^1 * 5^1) * (1 / 2 * 3)
n: 2^1 * 5^1
Remove isLess flag
B: (2^1 * 5^1) * (1 / 10)
n: 1 or 5^0
HALT
## Equal To
INPUT (n): 2^a * 3^b + 5^isEqual
OUTPUT: 5^isEqual
r2: a // first number
r3: b // second number
r5: isEqual // boolean; starts off at 1
### The Program
#### Pseudocode
while true {
if (r2 >= 1 && r3 >= 1) {
decrement a and b
} else if (r2 >= 1 && r5 >= 1) {
decrement a and isEqual
} else if (r3 >= 1 && r5 >= 1) {
decrement b and isEqual
} else if (r2 >= 1) {
decrement a
} else if (r3 >= 1) {
decrement b
} else {
break;
}
}
#### FRACTRAN
(
1 / 6,
1 / 10,
1 / 15,
1 / 2,
1 / 3
)
### Analysis
This works the same as the previous function for "greater than", but checks both
variables to set the flag. If either variable holds a value, then the flag is
set to false.
### Example
#### Example 1
We will test that 3 == 2. Our initial value (n) should be 2^3 * 3^2 * 5^1. Our
result should be r5 == 0, or false.
r2: 3
r3: 2
r5: 1
n: 2^3 * 3^2 * 5^1
Decrement both values until one reaches zero.
A: (2^3 * 3^2 * 5^1) * (1 / 2^1 * 3^1)
n: 2^2 * 3^1 * 5^1
Decrement both values until one reaches zero.
A: (2^2 * 3^1 * 5^1) * (1 / 2^1 * 3^1)
n: 2^1 * 5^1
Remove isEqual flag
B: 2^1 * 5^1 * (1) / 2^1 * 5^1
n: 1
HALT
#### Example 2
We will test that 2 == 2. Our initial value (n) should be 2^2 * 3^2 * 5^1. Our
result should be r5 == 1, or true.
r2: 1
r3: 1
r5: 1
n: 2^1 * 3^1 * 5^1
A: (2^2 * 3^2 * 5^1) * (1 / 2^1 * 3^1)
n: 2^1 * 3^1 * 5^1
A: (2^1 * 3^1 * 5^1) * (1 / 2^1 * 3^1)
n: 5^1
HALT