forked from snap-stanford/roland
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
55 lines (36 loc) · 1.61 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
from graphgym.register import (register_node_encoder,
register_edge_encoder)
from ogb.utils.features import get_bond_feature_dims
class ExampleNodeEncoder(torch.nn.Module):
"""
Provides an encoder for integer node features
Parameters:
num_classes - the number of classes for the embedding mapping to learn
"""
def __init__(self, emb_dim, num_classes=None):
super(ExampleNodeEncoder, self).__init__()
self.encoder = torch.nn.Embedding(num_classes, emb_dim)
torch.nn.init.xavier_uniform_(self.encoder.weight.data)
def forward(self, batch):
# Encode just the first dimension if more exist
batch.node_feature = self.encoder(batch.node_feature[:, 0])
return batch
register_node_encoder('example', ExampleNodeEncoder)
class ExampleEdgeEncoder(torch.nn.Module):
def __init__(self, emb_dim):
super(ExampleEdgeEncoder, self).__init__()
self.bond_embedding_list = torch.nn.ModuleList()
full_bond_feature_dims = get_bond_feature_dims()
for i, dim in enumerate(full_bond_feature_dims):
emb = torch.nn.Embedding(dim, emb_dim)
torch.nn.init.xavier_uniform_(emb.weight.data)
self.bond_embedding_list.append(emb)
def forward(self, batch):
bond_embedding = 0
for i in range(batch.edge_feature.shape[1]):
bond_embedding += \
self.bond_embedding_list[i](batch.edge_feature[:, i])
batch.edge_feature = bond_embedding
return batch
register_edge_encoder('example', ExampleEdgeEncoder)