forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmachine_i2s.c
1281 lines (1107 loc) · 47.1 KB
/
machine_i2s.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2022 Mike Teachman
* Copyright (c) 2022 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/misc.h"
#include "py/stream.h"
#include "py/objstr.h"
#include "modmachine.h"
#include "dma_manager.h"
#include CLOCK_CONFIG_H
#include "fsl_iomuxc.h"
#include "fsl_dmamux.h"
#include "fsl_edma.h"
#include "fsl_sai.h"
#if MICROPY_PY_MACHINE_I2S
// The I2S module has 3 modes of operation:
//
// Mode1: Blocking
// - readinto() and write() methods block until the supplied buffer is filled (read) or emptied (write)
// - this is the default mode of operation
//
// Mode2: Non-Blocking
// - readinto() and write() methods return immediately
// - buffer filling and emptying happens asynchronously to the main MicroPython task
// - a callback function is called when the supplied buffer has been filled (read) or emptied (write)
// - non-blocking mode is enabled when a callback is set with the irq() method
// - the DMA callback is used to implement the asynchronous background operations
//
// Mode3: Asyncio
// - implements the stream protocol
// - asyncio mode is enabled when the ioctl() function is called
// - the state of the internal ring buffer is used to detect that I2S samples can be read or written
//
// The samples contained in the app buffer supplied for the readinto() and write() methods have the following convention:
// Mono: little endian format
// Stereo: little endian format, left channel first
//
// I2S terms:
// "frame": consists of two audio samples (Left audio sample + Right audio sample)
//
// Misc:
// - for Mono configuration:
// - readinto method: samples are gathered from the L channel only
// - write method: every sample is output to both the L and R channels
// - for readinto method the I2S hardware is read using 8-byte frames
// (this is standard for almost all I2S hardware, such as MEMS microphones)
// - all 3 Modes of operation are implemented using the peripheral drivers in the NXP MCUXpresso SDK
// - all sample data transfers use DMA
// - the DMA ping-pong buffer needs to be aligned to a cache line size of 32 bytes. 32 byte
// alignment is needed to use the routines that clean and invalidate D-Cache which work on a
// 32 byte address boundary.
// - master clock frequency is sampling frequency * 256
// DMA ping-pong buffer size was empirically determined. It is a tradeoff between:
// 1. memory use (smaller buffer size desirable to reduce memory footprint)
// 2. interrupt frequency (larger buffer size desirable to reduce interrupt frequency)
// The sizeof 1/2 of the DMA buffer must be evenly divisible by the cache line size of 32 bytes.
#define SIZEOF_DMA_BUFFER_IN_BYTES (256)
#define SIZEOF_HALF_DMA_BUFFER_IN_BYTES (SIZEOF_DMA_BUFFER_IN_BYTES / 2)
// For non-blocking mode, to avoid underflow/overflow, sample data is written/read to/from the ring buffer at a rate faster
// than the DMA transfer rate
#define NON_BLOCKING_RATE_MULTIPLIER (4)
#define SIZEOF_NON_BLOCKING_COPY_IN_BYTES (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * NON_BLOCKING_RATE_MULTIPLIER)
#define NUM_I2S_USER_FORMATS (4)
#define I2S_RX_FRAME_SIZE_IN_BYTES (8)
#define SAI_CHANNEL_0 (0)
#define SAI_NUM_AUDIO_CHANNELS (2U)
typedef enum {
SCK,
WS,
SD,
MCK
} i2s_pin_function_t;
typedef enum {
RX,
TX,
} i2s_mode_t;
typedef enum {
MONO,
STEREO
} format_t;
typedef enum {
BLOCKING,
NON_BLOCKING,
ASYNCIO
} io_mode_t;
typedef enum {
TOP_HALF,
BOTTOM_HALF
} ping_pong_t;
typedef struct _ring_buf_t {
uint8_t *buffer;
size_t head;
size_t tail;
size_t size;
} ring_buf_t;
typedef struct _non_blocking_descriptor_t {
mp_buffer_info_t appbuf;
uint32_t index;
bool copy_in_progress;
} non_blocking_descriptor_t;
typedef struct _machine_i2s_obj_t {
mp_obj_base_t base;
uint8_t i2s_id;
mp_hal_pin_obj_t sck;
mp_hal_pin_obj_t ws;
mp_hal_pin_obj_t sd;
mp_hal_pin_obj_t mck;
i2s_mode_t mode;
int8_t bits;
format_t format;
int32_t rate;
int32_t ibuf;
mp_obj_t callback_for_non_blocking;
uint8_t dma_buffer[SIZEOF_DMA_BUFFER_IN_BYTES + 0x1f]; // 0x1f related to D-Cache alignment
uint8_t *dma_buffer_dcache_aligned;
ring_buf_t ring_buffer;
uint8_t *ring_buffer_storage;
non_blocking_descriptor_t non_blocking_descriptor;
io_mode_t io_mode;
I2S_Type *i2s_inst;
int dma_channel;
edma_handle_t edmaHandle;
edma_tcd_t *edmaTcd;
} machine_i2s_obj_t;
typedef struct _iomux_table_t {
uint32_t muxRegister;
uint32_t muxMode;
uint32_t inputRegister;
uint32_t inputDaisy;
uint32_t configRegister;
} iomux_table_t;
typedef struct _gpio_map_t {
uint8_t hw_id;
i2s_pin_function_t fn;
i2s_mode_t mode;
qstr name;
iomux_table_t iomux;
} gpio_map_t;
typedef struct _i2s_clock_config_t {
sai_sample_rate_t rate;
const clock_audio_pll_config_t *pll_config;
uint32_t clock_pre_divider;
uint32_t clock_divider;
} i2s_clock_config_t;
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in);
// The frame map is used with the readinto() method to transform the audio sample data coming
// from DMA memory (32-bit stereo) to the format specified
// in the I2S constructor. e.g. 16-bit mono
STATIC const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = {
{-1, -1, 0, 1, -1, -1, -1, -1 }, // Mono, 16-bits
{ 0, 1, 2, 3, -1, -1, -1, -1 }, // Mono, 32-bits
{-1, -1, 0, 1, -1, -1, 2, 3 }, // Stereo, 16-bits
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // Stereo, 32-bits
};
// 2 PLL configurations
// PLL output frequency = 24MHz * (.loopDivider + .numerator/.denominator)
// Configuration 1: for sampling frequencies [Hz]: 8000, 12000, 16000, 24000, 32000, 48000
// Clock frequency = 786,432,000 Hz = 48000 * 64 * 256
STATIC const clock_audio_pll_config_t audioPllConfig_8000_48000 = {
.loopDivider = 32, // PLL loop divider. Valid range for DIV_SELECT divider value: 27~54
.postDivider = 1, // Divider after the PLL, should only be 1, 2, 4, 8, 16
.numerator = 76800, // 30 bit numerator of fractional loop divider
.denominator = 100000, // 30 bit denominator of fractional loop divider
#if !defined(MIMXRT117x_SERIES)
.src = kCLOCK_PllClkSrc24M // Pll clock source
#endif
};
// Configuration 2: for sampling frequencies [Hz]: 11025, 22050, 44100
// Clock frequency = 722,534,400 = 44100 * 64 * 256
STATIC const clock_audio_pll_config_t audioPllConfig_11025_44100 = {
.loopDivider = 30, // PLL loop divider. Valid range for DIV_SELECT divider value: 27~54
.postDivider = 1, // Divider after the PLL, should only be 1, 2, 4, 8, 16
.numerator = 10560, // 30 bit numerator of fractional loop divider
.denominator = 100000, // 30 bit denominator of fractional loop divider
#if !defined(MIMXRT117x_SERIES)
.src = kCLOCK_PllClkSrc24M // Pll clock source
#endif
};
#if defined(MIMXRT117x_SERIES)
// for 1176 the pre_div value is used for post_div of the Audio PLL,
// which is 2**n: 0->1, 1->2, 2->4, 3->8, 4->16, 5->32
// The divider is 8 bit and must be given as n (not n-1)
// So the total division factor is given by (2**p) * d
STATIC const i2s_clock_config_t clock_config_map[] = {
{kSAI_SampleRate8KHz, &audioPllConfig_8000_48000, 1, 192}, // 384
{kSAI_SampleRate11025Hz, &audioPllConfig_11025_44100, 1, 128}, // 256
{kSAI_SampleRate12KHz, &audioPllConfig_8000_48000, 1, 128}, // 256
{kSAI_SampleRate16KHz, &audioPllConfig_8000_48000, 0, 192}, // 192
{kSAI_SampleRate22050Hz, &audioPllConfig_11025_44100, 0, 128}, // 128
{kSAI_SampleRate24KHz, &audioPllConfig_8000_48000, 0, 128}, // 128
{kSAI_SampleRate32KHz, &audioPllConfig_8000_48000, 0, 96}, // 96
{kSAI_SampleRate44100Hz, &audioPllConfig_11025_44100, 0, 64}, // 64
{kSAI_SampleRate48KHz, &audioPllConfig_8000_48000, 0, 64} // 64
};
STATIC const clock_root_t i2s_clock_mux[] = I2S_CLOCK_MUX;
#else
// for 10xx the total division factor is given by (p + 1) * (d + 1)
STATIC const i2s_clock_config_t clock_config_map[] = {
{kSAI_SampleRate8KHz, &audioPllConfig_8000_48000, 5, 63}, // 384
{kSAI_SampleRate11025Hz, &audioPllConfig_11025_44100, 3, 63}, // 256
{kSAI_SampleRate12KHz, &audioPllConfig_8000_48000, 3, 63}, // 256
{kSAI_SampleRate16KHz, &audioPllConfig_8000_48000, 2, 63}, // 192
{kSAI_SampleRate22050Hz, &audioPllConfig_11025_44100, 1, 63}, // 128
{kSAI_SampleRate24KHz, &audioPllConfig_8000_48000, 1, 63}, // 128
{kSAI_SampleRate32KHz, &audioPllConfig_8000_48000, 1, 47}, // 96
{kSAI_SampleRate44100Hz, &audioPllConfig_11025_44100, 0, 63}, // 64
{kSAI_SampleRate48KHz, &audioPllConfig_8000_48000, 0, 63} // 64
};
STATIC const clock_mux_t i2s_clock_mux[] = I2S_CLOCK_MUX;
STATIC const clock_div_t i2s_clock_pre_div[] = I2S_CLOCK_PRE_DIV;
STATIC const clock_div_t i2s_clock_div[] = I2S_CLOCK_DIV;
STATIC const iomuxc_gpr_mode_t i2s_iomuxc_gpr_mode[] = I2S_IOMUXC_GPR_MODE;
#endif
STATIC const I2S_Type *i2s_base_ptr[] = I2S_BASE_PTRS;
STATIC const dma_request_source_t i2s_dma_req_src_tx[] = I2S_DMA_REQ_SRC_TX;
STATIC const dma_request_source_t i2s_dma_req_src_rx[] = I2S_DMA_REQ_SRC_RX;
STATIC const gpio_map_t i2s_gpio_map[] = I2S_GPIO_MAP;
AT_NONCACHEABLE_SECTION_ALIGN(STATIC edma_tcd_t edmaTcd[MICROPY_HW_I2S_NUM], 32);
// called on processor reset
void machine_i2s_init0() {
for (uint8_t i = 0; i < MICROPY_HW_I2S_NUM; i++) {
MP_STATE_PORT(machine_i2s_obj)[i] = NULL;
}
}
// called on soft reboot
void machine_i2s_deinit_all(void) {
for (uint8_t i = 0; i < MICROPY_HW_I2S_NUM; i++) {
machine_i2s_obj_t *i2s_obj = MP_STATE_PORT(machine_i2s_obj)[i];
if (i2s_obj != NULL) {
machine_i2s_deinit(i2s_obj);
MP_STATE_PORT(machine_i2s_obj)[i] = NULL;
}
}
}
// Ring Buffer
// Thread safe when used with these constraints:
// - Single Producer, Single Consumer
// - Sequential atomic operations
// One byte of capacity is used to detect buffer empty/full
STATIC void ringbuf_init(ring_buf_t *rbuf, uint8_t *buffer, size_t size) {
rbuf->buffer = buffer;
rbuf->size = size;
rbuf->head = 0;
rbuf->tail = 0;
}
STATIC bool ringbuf_push(ring_buf_t *rbuf, uint8_t data) {
size_t next_tail = (rbuf->tail + 1) % rbuf->size;
if (next_tail != rbuf->head) {
rbuf->buffer[rbuf->tail] = data;
rbuf->tail = next_tail;
return true;
}
// full
return false;
}
STATIC bool ringbuf_pop(ring_buf_t *rbuf, uint8_t *data) {
if (rbuf->head == rbuf->tail) {
// empty
return false;
}
*data = rbuf->buffer[rbuf->head];
rbuf->head = (rbuf->head + 1) % rbuf->size;
return true;
}
STATIC bool ringbuf_is_empty(ring_buf_t *rbuf) {
return rbuf->head == rbuf->tail;
}
STATIC bool ringbuf_is_full(ring_buf_t *rbuf) {
return ((rbuf->tail + 1) % rbuf->size) == rbuf->head;
}
STATIC size_t ringbuf_available_data(ring_buf_t *rbuf) {
return (rbuf->tail - rbuf->head + rbuf->size) % rbuf->size;
}
STATIC size_t ringbuf_available_space(ring_buf_t *rbuf) {
return rbuf->size - ringbuf_available_data(rbuf) - 1;
}
STATIC int8_t get_frame_mapping_index(int8_t bits, format_t format) {
if (format == MONO) {
if (bits == 16) {
return 0;
} else { // 32 bits
return 1;
}
} else { // STEREO
if (bits == 16) {
return 2;
} else { // 32 bits
return 3;
}
}
}
STATIC int8_t get_dma_bits(uint16_t mode, int8_t bits) {
if (mode == TX) {
if (bits == 16) {
return 16;
} else {
return 32;
}
return bits;
} else { // RX
// always read 32 bit words for I2S e.g. I2S MEMS microphones
return 32;
}
}
STATIC bool lookup_gpio(const machine_pin_obj_t *pin, i2s_pin_function_t fn, uint8_t hw_id, uint16_t *index) {
for (uint16_t i = 0; i < ARRAY_SIZE(i2s_gpio_map); i++) {
if ((pin->name == i2s_gpio_map[i].name) &&
(i2s_gpio_map[i].fn == fn) &&
(i2s_gpio_map[i].hw_id == hw_id)) {
*index = i;
return true;
}
}
return false;
}
STATIC bool set_iomux(const machine_pin_obj_t *pin, i2s_pin_function_t fn, uint8_t hw_id) {
uint16_t mapping_index;
if (lookup_gpio(pin, fn, hw_id, &mapping_index)) {
iomux_table_t iom = i2s_gpio_map[mapping_index].iomux;
IOMUXC_SetPinMux(iom.muxRegister, iom.muxMode, iom.inputRegister, iom.inputDaisy, iom.configRegister, 1U);
IOMUXC_SetPinConfig(iom.muxRegister, iom.muxMode, iom.inputRegister, iom.inputDaisy, iom.configRegister,
pin_generate_config(PIN_PULL_DISABLED, PIN_MODE_OUT, 2, iom.configRegister));
return true;
} else {
return false;
}
}
STATIC bool is_rate_supported(int32_t rate) {
for (uint16_t i = 0; i < ARRAY_SIZE(clock_config_map); i++) {
if (clock_config_map[i].rate == rate) {
return true;
}
}
return false;
}
STATIC const clock_audio_pll_config_t *get_pll_config(int32_t rate) {
for (uint16_t i = 0; i < ARRAY_SIZE(clock_config_map); i++) {
if (clock_config_map[i].rate == rate) {
return clock_config_map[i].pll_config;
}
}
return 0;
}
STATIC const uint32_t get_clock_pre_divider(int32_t rate) {
for (uint16_t i = 0; i < ARRAY_SIZE(clock_config_map); i++) {
if (clock_config_map[i].rate == rate) {
return clock_config_map[i].clock_pre_divider;
}
}
return 0;
}
STATIC const uint32_t get_clock_divider(int32_t rate) {
for (uint16_t i = 0; i < ARRAY_SIZE(clock_config_map); i++) {
if (clock_config_map[i].rate == rate) {
return clock_config_map[i].clock_divider;
}
}
return 0;
}
STATIC uint32_t fill_appbuf_from_ringbuf(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
// copy audio samples from the ring buffer to the app buffer
// loop, copying samples until the app buffer is filled
// For asyncio mode, the loop will make an early exit if the ring buffer becomes empty
// Example:
// a MicroPython I2S object is configured for 16-bit mono (2 bytes per audio sample).
// For every frame coming from the ring buffer (8 bytes), 2 bytes are "cherry picked" and
// copied to the supplied app buffer.
// Thus, for every 1 byte copied to the app buffer, 4 bytes are read from the ring buffer.
// If a 8kB app buffer is supplied, 32kB of audio samples is read from the ring buffer.
uint32_t num_bytes_copied_to_appbuf = 0;
uint8_t *app_p = (uint8_t *)appbuf->buf;
uint8_t appbuf_sample_size_in_bytes = (self->bits == 16? 2 : 4) * (self->format == STEREO ? 2: 1);
uint32_t num_bytes_needed_from_ringbuf = appbuf->len * (I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes);
uint8_t discard_byte;
while (num_bytes_needed_from_ringbuf) {
uint8_t f_index = get_frame_mapping_index(self->bits, self->format);
for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) {
int8_t r_to_a_mapping = i2s_frame_map[f_index][i];
if (r_to_a_mapping != -1) {
if (self->io_mode == BLOCKING) {
// poll the ringbuf until a sample becomes available, copy into appbuf using the mapping transform
while (ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping) == false) {
;
}
num_bytes_copied_to_appbuf++;
} else if (self->io_mode == ASYNCIO) {
if (ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping) == false) {
// ring buffer is empty, exit
goto exit;
} else {
num_bytes_copied_to_appbuf++;
}
} else {
return 0; // should never get here (non-blocking mode does not use this function)
}
} else { // r_a_mapping == -1
// discard unused byte from ring buffer
if (self->io_mode == BLOCKING) {
// poll the ringbuf until a sample becomes available
while (ringbuf_pop(&self->ring_buffer, &discard_byte) == false) {
;
}
} else if (self->io_mode == ASYNCIO) {
if (ringbuf_pop(&self->ring_buffer, &discard_byte) == false) {
// ring buffer is empty, exit
goto exit;
}
} else {
return 0; // should never get here (non-blocking mode does not use this function)
}
}
num_bytes_needed_from_ringbuf--;
}
app_p += appbuf_sample_size_in_bytes;
}
exit:
return num_bytes_copied_to_appbuf;
}
// function is used in IRQ context
STATIC void fill_appbuf_from_ringbuf_non_blocking(machine_i2s_obj_t *self) {
// attempt to copy a block of audio samples from the ring buffer to the supplied app buffer.
// audio samples will be formatted as part of the copy operation
uint32_t num_bytes_copied_to_appbuf = 0;
uint8_t *app_p = &(((uint8_t *)self->non_blocking_descriptor.appbuf.buf)[self->non_blocking_descriptor.index]);
uint8_t appbuf_sample_size_in_bytes = (self->bits == 16? 2 : 4) * (self->format == STEREO ? 2: 1);
uint32_t num_bytes_remaining_to_copy_to_appbuf = self->non_blocking_descriptor.appbuf.len - self->non_blocking_descriptor.index;
uint32_t num_bytes_remaining_to_copy_from_ring_buffer = num_bytes_remaining_to_copy_to_appbuf *
(I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes);
uint32_t num_bytes_needed_from_ringbuf = MIN(SIZEOF_NON_BLOCKING_COPY_IN_BYTES, num_bytes_remaining_to_copy_from_ring_buffer);
uint8_t discard_byte;
if (ringbuf_available_data(&self->ring_buffer) >= num_bytes_needed_from_ringbuf) {
while (num_bytes_needed_from_ringbuf) {
uint8_t f_index = get_frame_mapping_index(self->bits, self->format);
for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) {
int8_t r_to_a_mapping = i2s_frame_map[f_index][i];
if (r_to_a_mapping != -1) {
ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping);
num_bytes_copied_to_appbuf++;
} else { // r_a_mapping == -1
// discard unused byte from ring buffer
ringbuf_pop(&self->ring_buffer, &discard_byte);
}
num_bytes_needed_from_ringbuf--;
}
app_p += appbuf_sample_size_in_bytes;
}
self->non_blocking_descriptor.index += num_bytes_copied_to_appbuf;
if (self->non_blocking_descriptor.index >= self->non_blocking_descriptor.appbuf.len) {
self->non_blocking_descriptor.copy_in_progress = false;
mp_sched_schedule(self->callback_for_non_blocking, MP_OBJ_FROM_PTR(self));
}
}
}
STATIC uint32_t copy_appbuf_to_ringbuf(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
// copy audio samples from the app buffer to the ring buffer
// loop, reading samples until the app buffer is emptied
// for asyncio mode, the loop will make an early exit if the ring buffer becomes full
uint32_t a_index = 0;
while (a_index < appbuf->len) {
if (self->io_mode == BLOCKING) {
// copy a byte to the ringbuf when space becomes available
while (ringbuf_push(&self->ring_buffer, ((uint8_t *)appbuf->buf)[a_index]) == false) {
;
}
a_index++;
} else if (self->io_mode == ASYNCIO) {
if (ringbuf_push(&self->ring_buffer, ((uint8_t *)appbuf->buf)[a_index]) == false) {
// ring buffer is full, exit
break;
} else {
a_index++;
}
} else {
return 0; // should never get here (non-blocking mode does not use this function)
}
}
return a_index;
}
// function is used in IRQ context
STATIC void copy_appbuf_to_ringbuf_non_blocking(machine_i2s_obj_t *self) {
// copy audio samples from app buffer into ring buffer
uint32_t num_bytes_remaining_to_copy = self->non_blocking_descriptor.appbuf.len - self->non_blocking_descriptor.index;
uint32_t num_bytes_to_copy = MIN(SIZEOF_NON_BLOCKING_COPY_IN_BYTES, num_bytes_remaining_to_copy);
if (ringbuf_available_space(&self->ring_buffer) >= num_bytes_to_copy) {
for (uint32_t i = 0; i < num_bytes_to_copy; i++) {
ringbuf_push(&self->ring_buffer,
((uint8_t *)self->non_blocking_descriptor.appbuf.buf)[self->non_blocking_descriptor.index + i]);
}
self->non_blocking_descriptor.index += num_bytes_to_copy;
if (self->non_blocking_descriptor.index >= self->non_blocking_descriptor.appbuf.len) {
self->non_blocking_descriptor.copy_in_progress = false;
mp_sched_schedule(self->callback_for_non_blocking, MP_OBJ_FROM_PTR(self));
}
}
}
// function is used in IRQ context
STATIC void empty_dma(machine_i2s_obj_t *self, ping_pong_t dma_ping_pong) {
uint16_t dma_buffer_offset = 0;
if (dma_ping_pong == TOP_HALF) {
dma_buffer_offset = 0;
} else { // BOTTOM_HALF
dma_buffer_offset = SIZEOF_HALF_DMA_BUFFER_IN_BYTES;
}
uint8_t *dma_buffer_p = &self->dma_buffer_dcache_aligned[dma_buffer_offset];
// flush and invalidate cache so the CPU reads data placed into RAM by DMA
MP_HAL_CLEANINVALIDATE_DCACHE(dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
// when space exists, copy samples into ring buffer
if (ringbuf_available_space(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
ringbuf_push(&self->ring_buffer, dma_buffer_p[i]);
}
}
}
// function is used in IRQ context
STATIC void feed_dma(machine_i2s_obj_t *self, ping_pong_t dma_ping_pong) {
uint16_t dma_buffer_offset = 0;
if (dma_ping_pong == TOP_HALF) {
dma_buffer_offset = 0;
} else { // BOTTOM_HALF
dma_buffer_offset = SIZEOF_HALF_DMA_BUFFER_IN_BYTES;
}
uint8_t *dma_buffer_p = &self->dma_buffer_dcache_aligned[dma_buffer_offset];
// when data exists, copy samples from ring buffer
if (ringbuf_available_data(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
// copy a block of samples from the ring buffer to the dma buffer.
// mono format is implemented by duplicating each sample into both L and R channels.
if ((self->format == MONO) && (self->bits == 16)) {
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 4; i++) {
for (uint8_t b = 0; b < sizeof(uint16_t); b++) {
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 4 + b]);
dma_buffer_p[i * 4 + b + 2] = dma_buffer_p[i * 4 + b]; // duplicated mono sample
}
}
} else if ((self->format == MONO) && (self->bits == 32)) {
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 8; i++) {
for (uint8_t b = 0; b < sizeof(uint32_t); b++) {
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 8 + b]);
dma_buffer_p[i * 8 + b + 4] = dma_buffer_p[i * 8 + b]; // duplicated mono sample
}
}
} else { // STEREO, both 16-bit and 32-bit
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i]);
}
}
} else {
// underflow. clear buffer to transmit "silence" on the I2S bus
memset(dma_buffer_p, 0, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
}
// flush cache to RAM so DMA can read the sample data
MP_HAL_CLEAN_DCACHE(dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
}
STATIC void edma_i2s_callback(edma_handle_t *handle, void *userData, bool transferDone, uint32_t tcds) {
machine_i2s_obj_t *self = userData;
if (self->mode == TX) {
// for non-blocking mode, sample copying (appbuf->ibuf) is initiated in this callback routine
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
copy_appbuf_to_ringbuf_non_blocking(self);
}
if (transferDone) {
// bottom half of buffer now emptied,
// safe to fill the bottom half while the top half of buffer is being emptied
feed_dma(self, BOTTOM_HALF);
} else {
// top half of buffer now emptied,
// safe to fill the top half while the bottom half of buffer is being emptied
feed_dma(self, TOP_HALF);
}
} else { // RX
if (transferDone) {
// bottom half of buffer now filled,
// safe to empty the bottom half while the top half of buffer is being filled
empty_dma(self, BOTTOM_HALF);
} else {
// top half of buffer now filled,
// safe to empty the top half while the bottom half of buffer is being filled
empty_dma(self, TOP_HALF);
}
// for non-blocking mode, sample copying (ibuf->appbuf) is initiated in this callback routine
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
fill_appbuf_from_ringbuf_non_blocking(self);
}
}
}
STATIC bool i2s_init(machine_i2s_obj_t *self) {
#if defined(MIMXRT117x_SERIES)
clock_audio_pll_config_t pll_config = *get_pll_config(self->rate);
pll_config.postDivider = get_clock_pre_divider(self->rate);
CLOCK_InitAudioPll(&pll_config);
CLOCK_SetRootClockMux(i2s_clock_mux[self->i2s_id], I2S_AUDIO_PLL_CLOCK);
CLOCK_SetRootClockDiv(i2s_clock_mux[self->i2s_id], get_clock_divider(self->rate));
uint32_t clock_freq = CLOCK_GetFreq(kCLOCK_AudioPllOut) / get_clock_divider(self->rate);
#else
CLOCK_InitAudioPll(get_pll_config(self->rate));
CLOCK_SetMux(i2s_clock_mux[self->i2s_id], I2S_AUDIO_PLL_CLOCK);
CLOCK_SetDiv(i2s_clock_pre_div[self->i2s_id], get_clock_pre_divider(self->rate));
CLOCK_SetDiv(i2s_clock_div[self->i2s_id], get_clock_divider(self->rate));
uint32_t clock_freq =
(CLOCK_GetFreq(kCLOCK_AudioPllClk) / (get_clock_divider(self->rate) + 1U) /
(get_clock_pre_divider(self->rate) + 1U));
#endif
if (!set_iomux(self->sck, SCK, self->i2s_id)) {
return false;
}
if (!set_iomux(self->ws, WS, self->i2s_id)) {
return false;
}
if (!set_iomux(self->sd, SD, self->i2s_id)) {
return false;
}
if (self->mck) {
if (!set_iomux(self->mck, MCK, self->i2s_id)) {
return false;
}
#if defined(MIMXRT117x_SERIES)
switch (self->i2s_id) {
case 1:
IOMUXC_GPR->GPR0 |= IOMUXC_GPR_GPR0_SAI1_MCLK_DIR_MASK;
break;
case 2:
IOMUXC_GPR->GPR1 |= IOMUXC_GPR_GPR1_SAI2_MCLK_DIR_MASK;
break;
case 3:
IOMUXC_GPR->GPR2 |= IOMUXC_GPR_GPR2_SAI3_MCLK_DIR_MASK;
break;
case 4:
IOMUXC_GPR->GPR2 |= IOMUXC_GPR_GPR2_SAI4_MCLK_DIR_MASK;
break;
}
#else
IOMUXC_EnableMode(IOMUXC_GPR, i2s_iomuxc_gpr_mode[self->i2s_id], true);
#endif
}
self->dma_channel = allocate_dma_channel();
DMAMUX_Init(DMAMUX);
if (self->mode == TX) {
DMAMUX_SetSource(DMAMUX, self->dma_channel, i2s_dma_req_src_tx[self->i2s_id]);
} else { // RX
DMAMUX_SetSource(DMAMUX, self->dma_channel, i2s_dma_req_src_rx[self->i2s_id]);
}
DMAMUX_EnableChannel(DMAMUX, self->dma_channel);
dma_init();
EDMA_CreateHandle(&self->edmaHandle, DMA0, self->dma_channel);
EDMA_SetCallback(&self->edmaHandle, edma_i2s_callback, self);
EDMA_ResetChannel(DMA0, self->dma_channel);
SAI_Init(self->i2s_inst);
sai_transceiver_t saiConfig;
SAI_GetClassicI2SConfig(&saiConfig, get_dma_bits(self->mode, self->bits), kSAI_Stereo, kSAI_Channel0Mask);
saiConfig.masterSlave = kSAI_Master;
uint16_t sck_index;
lookup_gpio(self->sck, SCK, self->i2s_id, &sck_index);
if ((self->mode == TX) && (i2s_gpio_map[sck_index].mode == TX)) {
saiConfig.syncMode = kSAI_ModeAsync;
SAI_TxSetConfig(self->i2s_inst, &saiConfig);
} else if ((self->mode == RX) && (i2s_gpio_map[sck_index].mode == RX)) {
saiConfig.syncMode = kSAI_ModeAsync;
SAI_RxSetConfig(self->i2s_inst, &saiConfig);
} else if ((self->mode == TX) && (i2s_gpio_map[sck_index].mode == RX)) {
saiConfig.syncMode = kSAI_ModeAsync;
SAI_RxSetConfig(self->i2s_inst, &saiConfig);
saiConfig.bitClock.bclkSrcSwap = true;
saiConfig.syncMode = kSAI_ModeSync;
SAI_TxSetConfig(self->i2s_inst, &saiConfig);
} else if ((self->mode == RX) && (i2s_gpio_map[sck_index].mode == TX)) {
saiConfig.syncMode = kSAI_ModeAsync;
SAI_TxSetConfig(self->i2s_inst, &saiConfig);
saiConfig.syncMode = kSAI_ModeSync;
SAI_RxSetConfig(self->i2s_inst, &saiConfig);
} else {
return false; // should never happen
}
SAI_TxSetBitClockRate(self->i2s_inst, clock_freq, self->rate, get_dma_bits(self->mode, self->bits),
SAI_NUM_AUDIO_CHANNELS);
SAI_RxSetBitClockRate(self->i2s_inst, clock_freq, self->rate, get_dma_bits(self->mode, self->bits),
SAI_NUM_AUDIO_CHANNELS);
edma_transfer_config_t transferConfig;
uint8_t bytes_per_sample = get_dma_bits(self->mode, self->bits) / 8;
if (self->mode == TX) {
uint32_t destAddr = SAI_TxGetDataRegisterAddress(self->i2s_inst, SAI_CHANNEL_0);
EDMA_PrepareTransfer(&transferConfig,
self->dma_buffer_dcache_aligned, bytes_per_sample,
(void *)destAddr, bytes_per_sample,
(FSL_FEATURE_SAI_FIFO_COUNT - saiConfig.fifo.fifoWatermark) * bytes_per_sample,
SIZEOF_DMA_BUFFER_IN_BYTES, kEDMA_MemoryToPeripheral);
} else { // RX
uint32_t srcAddr = SAI_RxGetDataRegisterAddress(self->i2s_inst, SAI_CHANNEL_0);
EDMA_PrepareTransfer(&transferConfig,
(void *)srcAddr, bytes_per_sample,
self->dma_buffer_dcache_aligned, bytes_per_sample,
(FSL_FEATURE_SAI_FIFO_COUNT - saiConfig.fifo.fifoWatermark) * bytes_per_sample,
SIZEOF_DMA_BUFFER_IN_BYTES, kEDMA_PeripheralToMemory);
}
memset(self->edmaTcd, 0, sizeof(edma_tcd_t));
// continuous DMA operation is achieved using the scatter/gather feature, with one TCD linked back to itself
EDMA_TcdSetTransferConfig(self->edmaTcd, &transferConfig, self->edmaTcd);
EDMA_TcdEnableInterrupts(self->edmaTcd, kEDMA_MajorInterruptEnable | kEDMA_HalfInterruptEnable);
EDMA_InstallTCD(DMA0, self->dma_channel, self->edmaTcd);
EDMA_StartTransfer(&self->edmaHandle);
if (self->mode == TX) {
SAI_TxEnableDMA(self->i2s_inst, kSAI_FIFORequestDMAEnable, true);
SAI_TxEnable(self->i2s_inst, true);
SAI_TxSetChannelFIFOMask(self->i2s_inst, kSAI_Channel0Mask);
} else { // RX
SAI_RxEnableDMA(self->i2s_inst, kSAI_FIFORequestDMAEnable, true);
SAI_RxEnable(self->i2s_inst, true);
SAI_RxSetChannelFIFOMask(self->i2s_inst, kSAI_Channel0Mask);
}
return true;
}
STATIC void machine_i2s_init_helper(machine_i2s_obj_t *self, size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {
ARG_sck,
ARG_ws,
ARG_sd,
ARG_mck,
ARG_mode,
ARG_bits,
ARG_format,
ARG_rate,
ARG_ibuf,
};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_ws, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_sd, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_format, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_rate, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_ibuf, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_pos_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
//
// ---- Check validity of arguments ----
//
// is Mode valid?
uint16_t i2s_mode = args[ARG_mode].u_int;
if ((i2s_mode != (RX)) &&
(i2s_mode != (TX))) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid mode"));
}
// are I2S pin assignments valid?
uint16_t not_used;
// is SCK valid?
const machine_pin_obj_t *pin_sck = pin_find(args[ARG_sck].u_obj);
if (!lookup_gpio(pin_sck, SCK, self->i2s_id, ¬_used)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid SCK pin"));
}
// is WS valid?
const machine_pin_obj_t *pin_ws = pin_find(args[ARG_ws].u_obj);
if (!lookup_gpio(pin_ws, WS, self->i2s_id, ¬_used)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid WS pin"));
}
// is SD valid?
const machine_pin_obj_t *pin_sd = pin_find(args[ARG_sd].u_obj);
uint16_t mapping_index;
bool invalid_sd = true;
if (lookup_gpio(pin_sd, SD, self->i2s_id, &mapping_index)) {
if (i2s_mode == i2s_gpio_map[mapping_index].mode) {
invalid_sd = false;
}
}
if (invalid_sd) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid SD pin"));
}
// is MCK defined and valid?
const machine_pin_obj_t *pin_mck = NULL;
if (args[ARG_mck].u_obj != mp_const_none) {
pin_mck = pin_find(args[ARG_mck].u_obj);
if (!lookup_gpio(pin_mck, MCK, self->i2s_id, ¬_used)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid MCK pin"));
}
}
// is Bits valid?
int8_t i2s_bits = args[ARG_bits].u_int;
if ((i2s_bits != 16) &&
(i2s_bits != 32)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
}
// is Format valid?
format_t i2s_format = args[ARG_format].u_int;
if ((i2s_format != MONO) &&
(i2s_format != STEREO)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid format"));
}
// is Rate valid?
int32_t i2s_rate = args[ARG_rate].u_int;
if (!is_rate_supported(i2s_rate)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid rate"));
}
// is Ibuf valid?
int32_t ring_buffer_len = args[ARG_ibuf].u_int;
if (ring_buffer_len > 0) {
uint8_t *buffer = m_new(uint8_t, ring_buffer_len);
self->ring_buffer_storage = buffer;
ringbuf_init(&self->ring_buffer, buffer, ring_buffer_len);
} else {
mp_raise_ValueError(MP_ERROR_TEXT("invalid ibuf"));
}
self->sck = pin_sck;
self->ws = pin_ws;
self->sd = pin_sd;
self->mck = pin_mck;
self->mode = i2s_mode;
self->bits = i2s_bits;
self->format = i2s_format;
self->rate = i2s_rate;
self->ibuf = ring_buffer_len;
self->callback_for_non_blocking = MP_OBJ_NULL;
self->non_blocking_descriptor.copy_in_progress = false;
self->io_mode = BLOCKING;
self->i2s_inst = (I2S_Type *)i2s_base_ptr[self->i2s_id];
// init the I2S bus
if (!i2s_init(self)) {
mp_raise_msg_varg(&mp_type_OSError, MP_ERROR_TEXT("I2S init failed"));
}
}
STATIC void machine_i2s_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "I2S(id=%u,\n"
"sck="MP_HAL_PIN_FMT ",\n"
"ws="MP_HAL_PIN_FMT ",\n"
"sd="MP_HAL_PIN_FMT ",\n"
"mck="MP_HAL_PIN_FMT ",\n"
"mode=%u,\n"
"bits=%u, format=%u,\n"
"rate=%d, ibuf=%d)",
self->i2s_id,
mp_hal_pin_name(self->sck),
mp_hal_pin_name(self->ws),
mp_hal_pin_name(self->sd),
mp_hal_pin_name(self->mck),
self->mode,
self->bits, self->format,
self->rate, self->ibuf
);
}
STATIC mp_obj_t machine_i2s_make_new(const mp_obj_type_t *type, size_t n_pos_args, size_t n_kw_args, const mp_obj_t *args) {
mp_arg_check_num(n_pos_args, n_kw_args, 1, MP_OBJ_FUN_ARGS_MAX, true);
uint8_t i2s_id = mp_obj_get_int(args[0]);