forked from blei-lab/deep-exponential-families
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdef_data.cpp
100 lines (91 loc) · 3.57 KB
/
def_data.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#include "def_data.hpp"
shared_ptr<DEFData> build_def_data(const string& data_type,
const pt::ptree& options,
const string& fname) {
if (data_type == "sparse-text") {
return shared_ptr<DEFData>(new SparseTextData(options, fname));
}
else if (data_type == "masked-text") {
return shared_ptr<DEFData>(new MaskedTextData(options, fname));
}
else {
throw runtime_error("unknown data type");
}
}
shared_ptr<arma::sp_mat> read_text_data(const string& fname, int max_examples) {
LOG(debug) << "reading text data from " << fname
<< " max_examples " << max_examples;
ifstream fin(fname);
int n_examples, n_dim;
fin >> n_examples >> n_dim;
vector<arma::uword> x_list, y_list;
vector<double> z_list;
for (int i=0; i<n_examples && ((max_examples<0) || (i<max_examples)); ++i) {
int x, y, z, nnz;
fin >> x >> nnz;
for(int j=0; j<nnz; ++j) {
fin >> y >> z;
x_list.push_back(x);
y_list.push_back(y);
z_list.push_back(z);
assert(y < n_dim);
}
}
// note we store the transposition of the data
arma::umat locations = arma::join_cols(arma::umat(y_list).t(),
arma::umat(x_list).t());
arma::vec values(z_list);
LOG(debug) << "locations " << "rows=" << locations.n_rows
<< " columns=" << locations.n_cols;
LOG(debug) << "values " << "rows=" << values.n_rows
<< " columns=" << values.n_cols;
if (max_examples >= 0)
n_examples = min(n_examples, max_examples);
auto data = new arma::sp_mat(locations, values, n_dim, n_examples);
LOG(debug) << "rows(data)=" << data->n_rows
<< " columns(data)=" << data->n_cols;
return shared_ptr<arma::sp_mat>(data);
}
shared_ptr<DEFData> SparseTextData::transpose() const {
SparseTextData* trans_data = new SparseTextData();
trans_data->options = options;
trans_data->data.reset(new arma::sp_mat(data->t()));
return shared_ptr<DEFData>(trans_data);
}
MaskedTextData::MaskedTextData(const pt::ptree& options, const string& fname)
: options(options){
auto max_examples = options.get<int>("max_examples");
auto exp_fname = expand_environment_variables(fname);
arma::mat masked_data(*read_text_data(exp_fname, max_examples));
test_filter = shared_ptr<arma::mat>( new arma::mat(masked_data) );
test_filter->transform([](double v) { return v < 0 ? 1 : 0; });
train_filter = shared_ptr<arma::mat>( new arma::mat(masked_data) );
train_filter->transform([](double v) { return v >= 0 ? 1 : 0; });
masked_data.transform([](double v) { return v >= 0 ? v : -v-1; });
data = shared_ptr<arma::sp_mat>( new arma::sp_mat(masked_data) );
LOG(debug) << "test data nnz=" << data->n_nonzero;
}
shared_ptr<DEFData> MaskedTextData::transpose() const {
MaskedTextData* trans_data =new MaskedTextData();
trans_data->options = options;
trans_data->data.reset(new arma::sp_mat(data->t()));
trans_data->test_filter.reset(new arma::mat(test_filter->t()));
trans_data->train_filter.reset(new arma::mat(train_filter->t()));
return shared_ptr<DEFData>(trans_data);
}
DenseData::DenseData(const pt::ptree& options, const string& fname) {
ifstream fin(fname);
arma::uword n_rows, n_cols;
fin >> n_rows >> n_cols;
for(arma::uword i=0; i<n_rows; ++i) {
for(arma::uword j=0; j<n_cols; ++j) {
// TODO fin >>
}
}
}
shared_ptr<DEFData> DenseData::transpose() const {
DenseData* trans_data = new DenseData();
trans_data->options = options;
trans_data->data.reset(new arma::mat(data->t()));
return shared_ptr<DEFData>(trans_data);
}