forked from blei-lab/deep-exponential-families
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdef_gamma_layer.hpp
176 lines (149 loc) · 5.31 KB
/
def_gamma_layer.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#pragma once
#include <cassert>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_sf.h>
#include "utils.hpp"
#include "def_layer.hpp"
#include "link_function.hpp"
#include "serialization.hpp"
// p(z_i | z_{i+1}), E[z_i] = W*z_{i+1}
class GammaLayer : public DEFLayer {
private:
pt::ptree options;
double shape;
LinkFunction* lf;
double min_gamma_scale;
public:
virtual double compute_log_p(double z, double param) {
double scale = lf->f(param) / shape + min_gamma_scale;
return - gsl_sf_lngamma(shape) - shape*log(scale) + (shape-1)*log(z) - z/scale;
}
GammaLayer(const pt::ptree& options, const DEFInitializer& initializer)
: options( options ) {
shape = options.get<double>("layer.shape");
min_gamma_scale = options.get<double>("layer.min_gamma_scale");
lf = get_link_function(options.get<string>("layer.lf"));
}
};
class GammaPriorLayer : public DEFPriorLayer {
protected:
pt::ptree options;
double shape, scale;
LinkFunction* lf;
public:
GammaPriorLayer(const pt::ptree& options, const DEFInitializer& initializer)
: options( options ) {
shape = options.get<double>("layer.shape");
scale = options.get<double>("layer.scale");
}
virtual double compute_log_p(double z) {
return - gsl_sf_lngamma(shape) - shape*log(scale) + (shape-1)*log(z) - z/scale;
}
};
class GammaFactorizedLayer : public InferenceFactorizedLayer {
protected:
arma::uword layer_size;
Serializable<arma::mat> wshape, wscale;
LinkFunction* lf;
double min_gamma_sample;
public:
virtual double compute_log_q(double z, arma::uword i, arma::uword j) {
auto shape = lf->f(wshape(i,j));
auto scale = lf->f(wscale(i,j));
auto log_q = - gsl_sf_lngamma(shape) - shape*log(scale) + (shape-1)*log(z) - z/scale;
LOG_IF(fatal, !isfinite(log_q))
<< "shape=" << shape << " scale=" << scale
<< " z=" << z << " log_q=" << log_q;
assert(isfinite(log_q));
return log_q;
}
virtual double sample(gsl_rng* rng, arma::uword i, arma::uword j) {
auto shape = lf->f(wshape(i,j));
auto scale = lf->f(wscale(i,j));
auto z = gsl_ran_gamma(rng, shape, scale);
//LOG_IF(fatal, (z < 1e-320) || (!isfinite(z)))
// << "shape=" << shape
// << " scale=" << scale
// << " z=" << z;
z = max(z, min_gamma_sample);
assert(z >= 1e-300);
return z;
}
virtual double mean(arma::uword i, arma::uword j) {
auto shape = lf->f(wshape(i,j));
auto scale = lf->f(wscale(i,j));
return shape*scale;
}
virtual void copy_params(InferenceFactorizedLayer* other) {
GammaFactorizedLayer* other_gfl = dynamic_cast<GammaFactorizedLayer*>(other);
if (other_gfl == NULL)
throw runtime_error("can't cast to GammaFactorizedLayer");
wshape = other_gfl->wshape;
wscale = other_gfl->wscale;
}
virtual void truncate(const ExampleIds& example_ids) {
auto min_shape0 = lf->f_inv(options.get<double>("global.min_gamma_shape"));
auto min_scale0 = lf->f_inv(options.get<double>("global.min_gamma_scale"));
for(auto j : example_ids) {
wshape.col(j).transform([=](double v) { return max(v, min_shape0); });
wscale.col(j).transform([=](double v) { return max(v, min_scale0); });
}
}
virtual void truncate() {
truncate(all_examples);
}
GammaFactorizedLayer() {}
GammaFactorizedLayer(const pt::ptree& options,
const DEFInitializer& initializer)
: InferenceFactorizedLayer(options) {
init(false);
gsl_rng* rng = initializer.rng;
auto wshape_init = options.get<double>("layer.wshape_init");
for(auto& v : wshape) {
v = exp(gsl_ran_gaussian(rng, 1)) * wshape_init;
}
auto wscale_init = options.get<double>("layer.wscale_init");
for(auto& v : wscale) {
v = exp(gsl_ran_gaussian(rng, 1)) * wscale_init;
}
}
void init(bool deserialize) {
LOG(debug) << "global.min_gamma_shape="
<< options.get<double>("global.min_gamma_shape");
layer_size = options.get<int>("layer.size");
lf = get_link_function(options.get<string>("lf"));
min_gamma_sample = options.get<double>("global.min_gamma_sample");
wshape.set_size(layer_size, n_examples);
wscale.set_size(layer_size, n_examples);
ScoreFunction score_shape = [=](double z, arma::uword i, arma::uword j) {
auto shape0 = wshape(i,j);
auto shape = lf->f(shape0);
auto scale = lf->f(wscale(i,j));
return lf->g(shape0) * (- gsl_sf_psi(shape) - log(scale) + log(z));
};
register_param(&wshape, score_shape, deserialize);
ScoreFunction score_scale = [=](double z, arma::uword i, arma::uword j) {
auto shape = lf->f(wshape(i,j));
auto scale0 = wscale(i,j);
auto scale = lf->f(scale0);
return lf->g(scale0) * (- shape/scale + z/scale/scale);
};
register_param(&wscale, score_scale, deserialize);
}
friend class boost::serialization::access;
BOOST_SERIALIZATION_SPLIT_MEMBER();
template<class Archive>
void save(Archive& ar, const unsigned int) const {
ar & wshape;
ar & wscale;
ar & boost::serialization::base_object<const InferenceFactorizedLayer>(*this);
}
template<class Archive>
void load(Archive& ar, const unsigned int) {
ar & wshape;
ar & wscale;
ar & boost::serialization::base_object<InferenceFactorizedLayer>(*this);
init(true);
}
};