-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathverifier.c
490 lines (443 loc) · 17.5 KB
/
verifier.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
#include "mimicc.h"
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
static void verifyTypeFCall(const Node *n);
static void verityTypeInitVar(Node *var, Node *initializer, Token *token);
static int checkRelationallyComparable(const TypeInfo *t1, const TypeInfo *t2);
static int isIntegerType(const TypeInfo *t);
static int isArithmeticType(const TypeInfo *t);
static int isScalarType(const TypeInfo *t);
static void fillNodeBinary(Node *n, NodeKind kind, Token *token, Node *lhs, Node *rhs) {
n->kind = kind;
n->token = token;
n->lhs = lhs;
n->rhs = rhs;
}
void verifyFlow(const Node *n) {
static int loopDepth = 0;
if (n == NULL)
return;
if (n->kind == NodeFunction) {
verifyFlow(n->body);
} else if (n->kind == NodeBlock) {
for (Node *c = n->body; c; c = c->next) {
verifyFlow(c);
}
} else if (n->kind == NodeSwitch) {
loopDepth++;
verifyFlow(n->body);
loopDepth--;
runtimeAssert(loopDepth >= 0);
} else if (n->kind == NodeFor) {
loopDepth++;
verifyFlow(n->body);
loopDepth--;
runtimeAssert(loopDepth >= 0);
} else if (n->kind == NodeDoWhile) {
loopDepth++;
verifyFlow(n->body);
loopDepth--;
runtimeAssert(loopDepth >= 0);
} else if (n->kind == NodeIf) {
verifyFlow(n->body);
for (Node *c = n->elseblock; c; c = c->next) {
verifyFlow(c->body);
}
} else if (n->kind == NodeBreak || n->kind == NodeContinue) {
if (loopDepth <= 0) {
errorAt(n->token, "%s outside of loop",
n->kind == NodeBreak ? "break" : "continue");
}
}
}
void verifyType(const Node *n) {
static Obj *currentFunction = NULL;
if (n == NULL)
return;
if (n->kind == NodeFunction) {
Obj *funcSave = currentFunction;
currentFunction = n->obj;
verifyType(n->body);
currentFunction = funcSave;
} else if (n->kind == NodeBlock) {
for (Node *c = n->body; c; c = c->next) {
verifyType(c);
}
} else if (n->kind == NodeFor) {
if (n->initializer) {
verifyType(n->initializer);
}
if (n->condition) {
verifyType(n->condition);
}
if (n->iterator) {
verifyType(n->iterator);
}
verifyType(n->body);
} else if (n->kind == NodeDoWhile) {
verifyType(n->condition);
verifyType(n->body);
} else if (n->kind == NodeExprList) {
verifyType(n->body);
} else if (n->kind == NodeConditional) {
// TODO: Check type of n->lhs and n->rhs matches or not.
// For the details, see P.90 on C11 draft.
} else if (n->kind == NodeIf) {
verifyType(n->condition);
verifyType(n->body);
for (Node *c = n->elseblock; c; c = c->next) {
if (c->kind == NodeElseif)
verifyType(c->condition);
verifyType(c->body);
}
} else if (n->kind == NodeReturn) {
int isReturnable = 0;
int isBothVoid = 0;
// Check if {expr} is valid.
verifyType(n->lhs);
// Check the returned value's types.
isReturnable = checkAssignable(currentFunction->func->retType, n->type);
isBothVoid = currentFunction->func->retType->type == TypeVoid &&
n->type->type == TypeVoid;
if (!(isReturnable || isBothVoid)) {
errorAt(n->token, "Type mismatch. Cannot return this.");
}
} else if (n->kind == NodeDeref) {
// Type check is needed for some cases like: v = *f(...);
verifyType(n->rhs);
} else if (n->kind == NodeAddress) {
if (!isLvalue(n->rhs)) {
errorAt(n->token, "Not a lvalue. Cannot take reference for this.");
}
// No type check is needed for lvalue nodes.
} else if (n->kind == NodeFCall) {
verifyTypeFCall(n);
} else if (n->kind == NodeAssign) {
if (!isLvalue(n->lhs))
errorAt(n->token, "Not a lvalue. Cannot assign.");
if (!checkAssignable(n->lhs->type, n->rhs->type))
errorAt(n->token, "Type mismatch. Cannot assign.");
verifyType(n->rhs);
} else if (n->kind == NodeAssignStruct) {
if (n->lhs->type->type != TypeStruct)
errorUnreachable();
else if (n->rhs->type->type != TypeStruct)
errorAt(n->rhs->token, "Struct required.");
else if (n->lhs->type->structDef != n->rhs->type->structDef)
errorAt(n->token, "Different struct.");
verifyType(n->rhs);
} else if (n->kind == NodeEq || n->kind == NodeNeq) {
verifyType(n->lhs);
if (!checkRelationallyComparable(n->lhs->type, n->rhs->type)) {
// Different from "<" and "<=", "==" and "!=" are allowed to
// compare pointer with NULL constant, so do check for it.
Node *other = NULL;
if (isWorkLikePointer(n->lhs->type))
other = evalConstantExpr(n->rhs);
else if (isWorkLikePointer(n->rhs->type))
other = evalConstantExpr(n->lhs);
if (!(other && other->kind == NodeNum && other->val == 0))
errorAt(n->token, "Type mismatch. Cannot compare these.");
}
verifyType(n->rhs);
} else if (n->kind == NodeLE || n->kind == NodeLT) {
verifyType(n->lhs);
if (!checkRelationallyComparable(n->lhs->type, n->rhs->type)) {
errorAt(n->token, "Type mismatch. Cannot compare these.");
}
verifyType(n->rhs);
} else if (n->kind == NodeAdd) {
verifyType(n->lhs);
if (isWorkLikePointer(n->lhs->type)) {
if (!isIntegerType(n->rhs->type)) {
errorAt(n->token, "Invalid operation for pointer.");
}
} else if (isWorkLikePointer(n->rhs->type)) {
if (!isIntegerType(n->lhs->type)) {
errorAt(n->token, "Invalid operation for pointer.");
}
} else if (!(isArithmeticType(n->lhs->type) && isArithmeticType(n->rhs->type))) {
errorAt(n->token, "This operation is not supported.");
}
verifyType(n->rhs);
} else if (n->kind == NodeSub) {
verifyType(n->lhs);
if (isWorkLikePointer(n->rhs->type)) {
if (!isWorkLikePointer(n->lhs->type)) {
errorAt(n->token, "Invalid operation for binary operator");
}
} else if (isWorkLikePointer(n->lhs->type)) {
// When lhs is pointer, only pointer or integers are accepted as
// rhs. At here, rhs must not be pointer, so only check if rhs is
// integer.
if (!isIntegerType(n->rhs->type)) {
errorAt(n->token, "Invalid operation for binary operator");
}
} else if (!(isArithmeticType(n->lhs->type) && isArithmeticType(n->rhs->type))) {
errorAt(n->token, "This operation is not supported.");
}
} else if (n->kind == NodeMul || n->kind == NodeDiv) {
verifyType(n->lhs);
if (!(isArithmeticType(n->lhs->type) && isArithmeticType(n->rhs->type))) {
errorAt(n->token, "This operation is not supported.");
}
verifyType(n->rhs);
} else if (n->kind == NodeDivRem) {
verifyType(n->lhs);
if (!(isIntegerType(n->lhs->type) && isIntegerType(n->rhs->type))) {
errorAt(n->token, "This operation is not supported.");
}
verifyType(n->rhs);
} else if (n->kind == NodeLogicalAND || n->kind == NodeLogicalOR) {
verifyType(n->lhs);
if (!(isScalarType(n->lhs->type) && isScalarType(n->rhs->type))) {
errorAt(n->token, "Both operands should have scalar type.");
}
verifyType(n->rhs);
} else if (n->kind == NodePostIncl || n->kind == NodePostDecl ||
n->kind == NodePreIncl || n->kind == NodePreDecl) {
Node *value =
(n->kind == NodePreIncl || n->kind == NodePreDecl) ? n->rhs : n->lhs;
if (!isLvalue(value)) {
int isIncrement = n->kind == NodePreIncl || n->kind == NodePostIncl;
errorAt(value->token, "Lvalue is required for %s operator",
isIncrement ? "incremental" : "decremental");
}
verifyType(value);
} else if (n->kind == NodeBitwiseAND || n->kind == NodeBitwiseOR ||
n->kind == NodeBitwiseXOR) {
verifyType(n->lhs);
if (!(isIntegerType(n->lhs->type) && isIntegerType(n->rhs->type)))
errorAt(n->token, "Both operands should have integer type.");
verifyType(n->rhs);
} else if (n->kind == NodeNot) {
if (!isScalarType(n->rhs->type))
errorAt(n->token, "Operand should has scalar type.");
verifyType(n->rhs);
} else if (n->kind == NodeTypeCast) {
// TODO: Check n->rhs lefts a value (?)
// TODO: Check cast operation can be carried out.
verifyType(n->rhs);
} else if (n->kind == NodeInitVar) {
verityTypeInitVar(n->lhs, n->rhs, n->rhs->token);
}
}
// Check called function exists, the number of argument matches, and all the
// actual arguments are assignable to the formal parameters. Exit program if
// some does not match.
static void verifyTypeFCall(const Node *n) {
#define ARGS_BUFFER_SIZE (10)
Node *actualArgBuf[ARGS_BUFFER_SIZE];
Node **actualArgs = actualArgBuf;
Node *arg = NULL;
Obj *formalArg = NULL;
Function *fdecl = NULL;
if (n->kind != NodeFCall) {
error("Internal error: Not a NodeFCall node is given.");
}
for (TypeInfo *base = n->fcall->declType;;) {
if (base->type == TypeFunction) {
fdecl = base->funcDef;
break;
} else if (base->type == TypePointer) {
base = base->baseType;
} else {
errorUnreachable();
}
}
if (n->fcall->argsCount != fdecl->argsCount && !fdecl->haveVaArgs) {
errorAt(n->token, "%d arguments are expected, but got %d.", fdecl->argsCount,
n->fcall->argsCount);
} else if (n->fcall->argsCount < fdecl->argsCount && fdecl->haveVaArgs) {
errorAt(n->token, "At least %d arguments are expected, but got just %d.",
fdecl->argsCount, n->fcall->argsCount);
}
if (fdecl->argsCount > ARGS_BUFFER_SIZE) {
actualArgs = (Node **)safeAlloc(fdecl->argsCount * sizeof(Node *));
}
if (fdecl->argsCount == 0)
return;
arg = n->fcall->args;
// Skip args in variadic arguments area
for (int i = 0; i < n->fcall->argsCount - fdecl->argsCount; ++i)
arg = arg->next;
for (Node **store = &actualArgs[fdecl->argsCount - 1]; arg; arg = arg->next) {
*store = arg;
--store;
}
formalArg = fdecl->args;
for (int i = 0; i < fdecl->argsCount; ++i) {
if (!checkAssignable(formalArg->type, actualArgs[i]->type)) {
errorAt(actualArgs[i]->token, "Type mismatch.");
}
formalArg = formalArg->next;
}
if (fdecl->argsCount > ARGS_BUFFER_SIZE) {
free(actualArgs);
actualArgs = NULL;
}
#undef ARGS_BUFFER_SIZE
}
static void verityTypeInitVar(Node *var, Node *initializer, Token *token) {
const TypeKind type = var->type->type;
if (type == TypeArray) {
if (initializer->kind == NodeInitList) {
int initCount = 0;
for (Node *e = initializer->body; e; e = e->next)
initCount++;
if (initCount > var->type->arraySize) {
errorAt(initializer->token, "%d items given to array sized %d.",
initCount, var->type->arraySize);
}
for (Node *init = initializer->body; init; init = init->next) {
Node elem = *var;
elem.type = elem.type->baseType;
verityTypeInitVar(&elem, init, token);
}
} else if (initializer->kind == NodeLiteralString) {
LiteralString *string = initializer->token->literalStr;
if (!string)
errorUnreachable();
if (var->type->baseType->type != TypeChar) {
errorAt(var->token, "char[] required.");
} else if (string->len > var->type->arraySize) {
errorAt(initializer->token, "String overflows.");
}
} else {
errorAt(initializer->token, "Initializer-list is expected for array.");
}
} else if (type == TypeStruct) {
if (initializer->type->type == TypeStruct) {
// Check if given struct and variable type is same.
Node assign = {};
fillNodeBinary(&assign, NodeAssignStruct, token, var, initializer);
verifyType(&assign);
} else if (initializer->kind == NodeInitList) {
int initCount = 0;
int memberCount = 0;
for (Node *e = initializer->body; e; e = e->next)
initCount++;
for (Obj *m = var->type->structDef->members; m; m = m->next)
memberCount++;
if (initCount > memberCount)
errorAt(token, "Too much items are given.");
// Check whether each member is assignable.
Obj *m = var->type->structDef->members;
Node *initVal = initializer->body;
for (; m && initVal; m = m->next, initVal = initVal->next) {
Node memberNode = {};
fillNodeBinary(&memberNode, NodeMemberAccess, var->token, var, NULL);
memberNode.type = m->type;
verityTypeInitVar(&memberNode, initVal, token);
}
} else {
errorAt(token, "Initializer-list is expected here");
}
} else {
if (initializer->kind == NodeInitList) {
errorAt(initializer->token, "Cannot have initializer-list here.");
}
// Check given value is assignable to variable.
Node assign = {};
fillNodeBinary(&assign, NodeAssign, initializer->token, var, initializer);
verifyType(&assign);
}
}
// Check if rhs is assignable to lhs. Return TRUE if can.
int checkAssignable(const TypeInfo *lhs, const TypeInfo *rhs) {
if (isArithmeticType(lhs)) {
return isArithmeticType(rhs);
} else if (lhs->type == TypeStruct) {
return checkTypeEqual(lhs, rhs);
} else if (lhs->type == TypePointer && isWorkLikePointer(rhs)) {
const TypeInfo *lhsBase = getBaseType(lhs);
if (lhsBase->type == TypeVoid || getBaseType(rhs)->type == TypeVoid) {
return 1;
}
return checkTypeEqual(lhs->baseType, rhs->baseType);
} else if (lhs->type == TypePointer) {
if (rhs->type == TypeNumber) {
return 0; // TODO: Allow when assigning NULL.
} else if (lhs->baseType->type == TypeFunction && rhs->type == TypeFunction) {
return 1;
}
return 0;
}
return 0;
}
// Return TRUE if operands are compareble.
static int checkRelationallyComparable(const TypeInfo *t1, const TypeInfo *t2) {
if (isArithmeticType(t1) && isArithmeticType(t2)) {
return 1;
} else if (isWorkLikePointer(t1) && isWorkLikePointer(t2)) {
const TypeInfo *base;
base = t1->baseType;
while (base->type == TypePointer)
base = base->baseType;
if (base->type == TypeVoid)
return 1;
base = t2->baseType;
while (base->type == TypePointer)
base = base->baseType;
if (base->type == TypeVoid)
return 1;
return checkRelationallyComparable(t1->baseType, t2->baseType) ||
checkTypeEqual(t1->baseType, t2->baseType);
}
return 0;
}
int checkTypeEqual(const TypeInfo *t1, const TypeInfo *t2) {
if (t1->type != t2->type) {
return 0;
} else if (t1->type == TypePointer || t1->type == TypeArray) {
return checkTypeEqual(t1->baseType, t2->baseType);
} else if (t1->type == TypeFunction) {
Obj *arg1, *arg2;
if (!checkTypeEqual(t1->funcDef->retType, t2->funcDef->retType))
return 0;
arg1 = t1->funcDef->args;
arg2 = t2->funcDef->args;
for (; arg1; arg1 = arg1->next, arg2 = arg2->next) {
if (!(arg2 && checkTypeEqual(arg1->type, arg2->type)))
return 0;
}
if (arg2)
return 0;
} else if (t1->type == TypeStruct) {
return t1->structDef == t2->structDef;
} else if (t1->type == TypeEnum) {
return t1->enumDef == t2->enumDef;
}
return 1;
}
// Return TRUE if given type is integer type.
static int isIntegerType(const TypeInfo *t) {
return t->type == TypeInt || t->type == TypeNumber || t->type == TypeEnum;
}
// Return TRUE if given type is arithmetic type.
static int isArithmeticType(const TypeInfo *t) {
return t->type == TypeChar || t->type == TypeInt || t->type == TypeNumber ||
t->type == TypeEnum;
}
static int isScalarType(const TypeInfo *t) {
return isArithmeticType(t) || isWorkLikePointer(t);
}
// Return TRUE is `n` is lvalue.
int isLvalue(const Node *n) {
return n->kind == NodeLVar || n->kind == NodeGVar || n->kind == NodeDeref ||
n->kind == NodeMemberAccess;
}
// Return TRUE if given type can work like a pointer. Currently returns TRUE
// when given type is pointer or array.
int isWorkLikePointer(const TypeInfo *t) {
if (t->type == TypePointer || t->type == TypeArray)
return 1;
return 0;
}
// Get base type of pointer/array.
const TypeInfo *getBaseType(const TypeInfo *type) {
while (type->type == TypePointer || type->type == TypeArray)
type = type->baseType;
return type;
}