-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit_memory.py
104 lines (83 loc) · 3.85 KB
/
init_memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from tqdm import tqdm
import random
import os
import threading
import torch
import numpy as np
import torch.optim as optim
from config import config
from dataset import get_dataset, get_dataloader
from utils import weights_init, move_model_state_dict, move_optim_state_dict, get_formatted_string, get_weight_config_str, CosineAnnealingLR
from train import test, continuous_train_step
from models import get_model
from weight_memory import WeightMemory
def save_to_memory(memory, model, optimizer, time_step, error,
p=1., eviction='oldest'):
if p < 1. and random.random() > p:
return
model_state = move_model_state_dict(model.state_dict(), 'cpu')
optim_state = move_optim_state_dict(optimizer.state_dict(), 'cpu')
steps = time_step
errors = error
memory.update(steps, model_state, optim_state, errors, eviction=eviction)
def init_memory(memory, model, device, train_loader, valid_loader,
train_iters, num_valid_batches=1, init_weights=False):
'''Prepare weights in the memory across time steps'''
if init_weights:
model.apply(weights_init)
num_blocks = model.num_blocks
params = [{'params': model.block_parameters(j)} for j in range(model.num_blocks)]
if config.optim == 'adam':
optimizer = optim.Adam(params, lr=config.lr, weight_decay=config.weight_decay)
elif config.optim == 'momentum':
optimizer = optim.SGD(params, lr=config.lr, weight_decay=config.weight_decay, momentum=config.momentum)
elif config.optim == 'sgd':
optimizer = optim.SGD(params, lr=config.lr, weight_decay=config.weight_decay, momentum=config.momentum)
else:
raise NotImplementedError
scheduler = CosineAnnealingLR(optimizer, config.train_iters, config.lr_min)
time_step = 0
valid_freq = max(1, train_iters//500)
print("Initialize memory")
pbar = tqdm(total=train_iters)
alpha = torch.zeros((num_blocks-1, 2), device=device)
while True:
for x, y in train_loader:
scheduler.step(time_step)
model.train()
x, y = x.to(device), y.to(device)
continuous_train_step(x, y, time_step, model, optimizer, alpha, None,
False, scheduler, device)
#if time_steps[0] in save_iters:
if time_step % valid_freq == 0:
loss_avg, err_avg, _ = test(model, valid_loader, device, num_valid_batches)
error = err_avg
model.train()
pbar.set_description('[Step {}] loss: {:.2f}, error: {:.2f}'.format(
time_step, loss_avg, err_avg), True)
save_to_memory(memory, model, optimizer, time_step, error, 1., eviction='worst')
time_step += 1
pbar.update(1)
if time_step >= train_iters:
pbar.close()
return
def main():
train_dataset, valid_dataset = get_dataset(config.dataset, train=True,
download=True, return_valid=True)
train_loader = get_dataloader(train_dataset, config.batch_size, shuffle=True,
classes_per_batch=config.classes_per_batch)
valid_loader = get_dataloader(valid_dataset, config.valid_batch_size)
arch = config.name.split('-')[0]
model, device = get_model(arch, 1, cuda=True, return_devices=True) # should be nn.Sequential
model, device = model[0], device[0]
memory = WeightMemory(config.memory_size)
weight_config_str = get_weight_config_str()
init_memory(memory, model, device,
train_loader, valid_loader, config.train_iters)
memory.save(os.path.join(config.mem_dir, arch, weight_config_str))
if __name__ == "__main__":
os.environ['PYTHONHASHSEED']=str(config.seed)
torch.manual_seed(config.seed)
np.random.seed(config.seed)
random.seed(config.seed)
main()