-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
99 lines (78 loc) · 3.48 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
from glob import glob
import json
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.backends import cudnn
import torchvision.utils as vutils
from torchvision import transforms
from tqdm import tqdm
from config import config
from sedona import SEDONA
from dataset import get_dataset, get_dataloader, DATASET_CONFIGS, AVAILABLE_TRANSFORMS
from models import get_model
def search(train_dataset, valid_dataset):
train_loader = get_dataloader(train_dataset, config.batch_size, shuffle=True,
classes_per_batch=config.classes_per_batch)
valid_shuffled_loader = get_dataloader(valid_dataset, config.valid_batch_size, shuffle=True,
classes_per_batch=config.classes_per_batch)
valid_loader = get_dataloader(valid_dataset, config.valid_batch_size)
meta_learner = SEDONA(config.memory_size, config.train_iters)
meta_learner.init_models(config.name.split('-')[0], train_loader, valid_loader)
meta_learner.init_variables()
if config.meta_optimizer == 'adam':
meta_optimizer = optim.Adam(meta_learner.parameters(), lr=config.meta_lr, betas=(0.5, 0.999), weight_decay=config.meta_wd)
elif config.meta_optimizer == 'momentum':
meta_optimizer = optim.SGD(meta_learner.parameters(), lr=config.meta_lr, momentum=0.9, weight_decay=config.meta_wd)
elif config.meta_optimizer == 'sgd':
meta_optimizer = optim.SGD(meta_learner.parameters(), lr=config.meta_lr, weight_decay=config.meta_wd)
tmp_dir = os.path.join(config.tmp_dir, config.name)
if config.resume:
# load the latest state
dirs = glob(os.path.join(tmp_dir, '*'))
start_iter = max(int(d.split('/')[-1]) for d in dirs)
tmp_dir = os.path.join(tmp_dir, str(start_iter))
meta_learner.load_states(tmp_dir, meta_optimizer, remove_after=True)
else:
start_iter = 0
pbar = tqdm(initial=start_iter, total=config.meta_train_iters)
for i in range(start_iter, config.meta_train_iters):
if not config.not_load_memory:
meta_learner.load_from_memory()
meta_learner.time_step += 1
meta_optimizer.zero_grad()
loss = meta_learner.diff_step(train_loader, valid_shuffled_loader, config.num_inner_steps, 1)
meta_optimizer.step()
meta_learner.train_step(train_loader, valid_loader=valid_loader if (i+1) % config.monitor_freq==0 else None)
if not config.not_load_memory:
meta_learner.save_to_memory()
if (i+1) % config.monitor_freq == 0:
msg = meta_learner.monitor(i, valid_loader)
pbar.write(msg)
pbar.update(1)
pbar.close()
alpha, beta = meta_learner.parameters()
alpha, beta = alpha.data.cpu(), beta.data.cpu()
return alpha, beta
def main():
# prepare datasets
train_dataset, valid_dataset = get_dataset(config.dataset, train=True, download=True, return_valid=True)
# search
alpha, beta = search(train_dataset, valid_dataset)
# save alpha and beta
base_dir = os.path.join(config.out_dir, config.name)
if not os.path.exists(base_dir):
os.makedirs(base_dir)
path = os.path.join(base_dir, "alpha.pt")
torch.save(alpha, path)
path = os.path.join(base_dir, "beta.pt")
torch.save(beta, path)
if __name__ == "__main__":
os.environ['PYTHONHASHSEED']=str(config.seed)
torch.manual_seed(config.seed)
np.random.seed(config.seed)
random.seed(config.seed)
main()